
Recommender Algorithm for Japanese Animes

BT5153 Applied Machine Learning in Business Analytics – Team Anime-niacs Project Report

Sam Too Shang Yao (A0206528E), Quek Khim Geok (A0206471L), Lim Yew Kuan (A0206517J),
Tan Wei Jie (A0036333N), Ratna Herlina (A0206506M)

Abstract

Recommender systems have been widely adopted and
successfully used by e-commerce websites and content
streaming websites to improve sales, enhance customer
experience, increase engagement time. In this work, we
explored using content-based filtering and collaborative
filtering to develop a recommender system for Animes,
which are increasingly gaining popularity globally. Under
the content-based filtering, we derived the cosine similarity
score between each pair of animes using either the synopsis
of the animes or the images of the animes to determine
which animes are similar and hence, to be recommended to
users. Under collaborative filtering, we explored
techniques such as singular vector decomposition based on
matrix factorization and an autoencoder to predict the
ratings of animes which users did not interact before. Our
results showed that the collaborative filtering approach
performed better, with the autoencoder model achieving
the highest hit rate of 43% when evaluated using the top 10
animes to be recommended to users.

1. Introduction

Anime refers to animation in Japan and was originally
produced for consumption among the Japanese. It has
become extremely popular, has been translated into many
different languages, and gained a huge following from
millions of international fans. Unlike conventional
cartoons from American/European producers (i.e., Walt
Disney) which are predominantly catered to children,
anime is highly popular amongst adults as it delves into
diverse topics and themes that are relatable to a mature
audience. However, due to the diversity of genres, ratings
of animes could be highly subjective. For instance, animes
that might be highly rated by seasoned fans might not be
perceived favourably by new viewers as they require
background knowledge of other animes or Japanese
culture. In addition, with more than seventeen thousand
anime titles to choose from, viewers could potentially get
lost and waste hours scrolling through and watching
animes that do not appeal to them.

2. Problem Statement

Recommender systems have been widely adopted and
successfully used by e-commerce websites such as

Amazon (Amazon, 2019) and content streaming websites
like Netflix (Netflix, 2020) to improve sales, enhance
customer experience, increase viewership and engagement
time. However, there is currently a lack of interest in the
area of enhancing user experience for viewers of animes.
In addition, popular anime websites such as MyAnimelist
(MyAnimeList, 2021) (MAL) and Anime-Planet (Anime-
Planet, 2021) have recommender systems embedded in
them. However, one common trait observed in their
recommender system is that it relies on members who have
watched the animes to make recommendations. For
example, in MAL, the Anime Recommendations tab
provides data on the pairing of the recommendations made
by a user and the reason for the recommended pairing and
when it was made (MyAnimeList, 2021). This is similarly
observed in Anime-Planet (Anime-Planet, 2021). Given
the advancement in techniques used to develop
recommender systems, there are more avenues to tap on
unstructured data such as text and image data which could
potentially improve the quality of the recommendation and
hence increase user engagement.

As such, the prime motivation of this project is to develop
a recommender system with an algorithm which
incorporates unstructured data (i.e., synopsis and anime
cover images) with the assumption that viewers tend to
watch animes with similar artwork styles or storylines.

3. Dataset

Three key datasets were identified for this study: (i)
Reviews data; (ii) Anime Metadata; and (iii) Images of
Animes. Details of each dataset are provided in the
following sub-sections.

3.1 Reviews

Review data were extracted from Kaggle MyAnimeList
Dataset (MyAnimeList Dataset, 2020). The creator of the
dataset scrapped the data from MAL (MyAnimeList,
2021). The data was kept in 3 separate tables namely: (i)
Profile Dataset – this table contains information about
users who watched the various animes. It comprises 81,727
observations with 5 variables; (ii) Reviews Dataset – this
table contains the ratings given by users for an anime. It
comprises 192,112 observations with 7 variables; and (iii)
Animes Dataset – this table contains metadata of each

Recommender Algorithm for Japanese Animes

2

anime. It comprises 19,311 observations with 12 variables.
Figure 1 details the data variables and the corresponding
data type found in each of the abovementioned dataset.

3.2 Anime Metadata

Using a combination of Selenium and Beautiful Soup
packages to scrape the MAL website (MyAnimeList,
2021), a total of 39 metadata fields were obtained. Table 1
below details the metadata fields and Table 2 shows the
count of animes belonging to the top 10 genres.

Table 1. Anime Metadata Scrapped from MAL Website
Variable Type Variable Type

Title String Popularity String

URL String Members Integer

English String Favorites Integer

Synonyms String Started Date

Japanese String Ended Date

Type String Voters Integer

Episodes Integer Adaptation String

Status String Alternative
version String

Aired String Side story String

Premiered String Spin-off String

Broadcast String Synopsis String

Producers String Prequel String

Licensors String Alternative
setting String

Studios String Sequel String

Source String Other String

Genres String Summary String

Duration Integer Character String

Rating String Parent story String

Score Decimal Full story String

Ranked String

Table 2. Anime Metadata Scrapped from MAL Website

Genre No. of Animes

Comedy 6,009

Action 3,865

Fantasy 3,258

Adventure 2,950

Kids 2,662

Drama 2,616,

Sci-Fi 2,575

Music 2,230

Shounen 1,995

Slice of Life 1,898

3.3 Images

Image data of the corresponding anime titles were scraped
from MAL website (MyAnimeList, 2021) by utilising the
URL information extracted in Section 3.2. Beautiful Soup
package in Python was used to fetch a total of 17,335
images in jpg format. The sizes of the images are typically
between 200 and 250 pixels wide and between 300 to 400
pixels long. Both vertical and horizontal resolutions are at
96 DPI. These images usually represent the cover
pages/poster view of the anime. Figure 2 below illustrates
some of the images extracted.

4. Data Pre-processing

4.1 Removal of duplicates

A total of 61,593 duplicate uid, which represents the rating
made by a user for an anime, were removed from the

Figure 1 – Data Variables and Data Types for Profile, Reviews
and Animes Datasets

Figure 2 – Sample of Image Data obtained from MAL website

Recommender Algorithm for Japanese Animes

3

Reviews Dataset, while a total of 11 duplicate animes were
removed from the Animes Dataset.

4.2 Scope of analysis

A subset of the Anime Dataset was obtained where only
the animes which were shown on television were
considered for analysis. Animes with other types, such as
“Movies” and “Music” were excluded. In addition, only
animes which had valid synopsis data (i.e., non-null fields)
were selected. This seeks to ensure that the animes used in
the content-based filtering analysis are consistent. Apart
from limiting the user rating data from the Reviews Dataset
based on the animes which were within scope, users who
had only rated one anime were excluded. The exclusion
seeks to ensure that the performance of the recommender
algorithm on every user can be evaluated in the test dataset.

5. Machine Learning Models

The techniques used to build a recommender system could
be classified into two broad categories: (i) Content-based
Filtering – a method which makes recommendations by
identifying the common characteristics of items that have
been well received by a user and recommending new items
which share similar characteristics to the user (Ricci et al.,
2011). An example of characteristic can be the genre class
in the context of anime; (ii) Collaborative Filtering – a
method which makes recommendation through gathering
similar users’ historical preference on a set of items. The
main idea is that the rating of a user is likely to be similar
to another user if both of them have rated other items in a
similar manner (Ricci et al., 2011).

A total of 5 models were experimented in this project.
Models 1, 2a and 2b were content-based filtering models
which were trained using features either derived from the
synopsis of animes or the images to measure the similarity
of animes. Models 3 and 4 were collaborative filtering
models which were trained using user ratings.

5.1 Model 1: Content Based Filtering with Synopsis
Similarity

In model 1, text preprocessing was done on the synopsis
data to remove noise and retain key words as features
before the computation of cosine similarity scores for the
animes. The text preprocessing steps consisted of adding
titles to the synopsis if it only contains phrases such as
“second season”, converting text to lower case and
removing punctuation; removing digits and whitespace;
removing English stopwords; removing words with 2
characters or less; and lemmatization of the words. With
the processed synopsis, features were generated using
Term Frequency Inverse Document Frequency (‘Tfidf’)
vectorizer (Jain, 2020), with n_gram ranging from 1 to 5 to
capture context and semantics. With the vectorized text
data, the cosine similarity scores were calculated for every
pair of animes using sklearn’s
metrics.pairwise.linear_kernel function. Thereafter, the

predicted ratings of user u for anime i was obtained by
taking the sum of the product of similarity scores and user
u rating over the sum of all similarity scores using the
formula:

𝒑𝒑𝒑𝒖𝒖,𝒊𝒊 =
∑ (𝒓𝒓𝒖𝒖,𝒎𝒎 ∗ 𝒔𝒔𝒊𝒊,𝒎𝒎𝒎𝒎∈𝑰𝑰)

∑ 𝒔𝒔𝒊𝒊,𝒎𝒎𝒎𝒎∈𝑰𝑰

where

𝒎𝒎 ∈ 𝑰𝑰 represents an anime in the set of all animes within
scope
𝒓𝒓𝒖𝒖,𝒎𝒎 represents the user ratings for anime m
𝒔𝒔𝒊𝒊,𝒎𝒎 represents the similarity score between the anime m
rated by the user and anime i of interest
𝒑𝒑𝒑𝒖𝒖,𝒊𝒊 represents the predicted rating for user u for anime i

5.2 Model 2a: Content Based Filtering with Image
Similarity (Transfer learning only)

Keras provides access to several top-performing pre-
trained models such as ResNet-50, VGG19 and
InceptionV3. Given the availability of these top-
performing pre-trained models and in view that our image
dataset is relatively small, we applied CNN transfer
learning to extract the latent features from the images of
each anime. Specifically, model weights from a pretrained
ResNet-50 model, trained using images from ImageNet,
were used. The fully connected output layer was excluded
by specifying the “include top” argument to “False” since
the model was intended as a feature extractor rather than a
classifier. Additionally, a global average pooling layer was
added to summarize the activation for their use as a feature
vector representation of the input images. As ResNet-50
requires the image inputs to be of target size 224 x 224, the
cover images of the animes were resized to this dimension.
The application of transfer learning thus converts an image
from an input of 224 x 224 x 3 dimensions to an output of
2048 dimensions.

Once the latent features of the anime cover images were
extracted, the cosine similarity scores between the images
were calculated using the sklearn.metrics.pairwise cosine
similarity function. Figure 3 shows an example of an image
with its top-3 most similar images.

Figure 3 - Example of an image with its top-3 similar images

Recommender Algorithm for Japanese Animes

4

5.3 Model 2b: Content Based Filtering with Image
Similarity (Transfer learning and classification)

Model 2b also used image latent features for its similarity
matrix. However, instead of just extracting the features
directly from the global average pooling layer via transfer
learning from a pre-trained ResNet-50 model, fine-tuning
was applied. A dense layer with a ‘relu’ activation function
was added to compress the dimensions even further to 1024
dimensions, and a softmax layer was added to model it as
a multilabel classification task. During training, the
backbone ResNet50 model weights were frozen. Only the
dense and softmax layers’ weights were updated. After
training the classification model, the output of the dense
layer (i.e., 1024 dimensions) was used to compute the
cosine similarity scores of the animes. The objective of
such modification seeks to ensure that the features to be
extracted from the images are conditioned on the genres of
the animes, thereby minimizing the occurrence where two
animes with drastically differing genres are given high
similarity scores solely due to the similarity in the design
of the images (Wrg, 2020). Figure 4 shows an example of
an image with its top-3 most similar images. One
observation is that the ordering is slightly different from
Figure 3 because of the fine-tuning done on the additional
layer based on the classification task.

For the classification task, instead of using the 42 genres
extracted from MAL as the target values, a total of 5 topics
derived from the synopsis were used as the target classes.
These topics were obtained through Latent Dirichlet
Allocation (LDA) on the synopsis of the animes. Before
LDA was conducted, the following text preprocessing
steps were taken: conversion to lower case; removal of
whitespace; removal of non-alphanumeric characters;
conversion of blank synopsis to empty string; removal of
english stopwords; lemmatization where bigrams were
created and nouns, adjectives, verbs and adverbs were
retained. Subsequently, the Mallet library was used for
Topic Modelling and it was preferred over the Gensim
library’s LDA function as it had been shown to produce
better quality topics (McCallum, 2002). The Mallet model
provided Coherence Values which were a measure of the
degree of semantic similarity between high scoring words
n the topics. The selection of optimal number of topics was

based on the elbow-method where the number of topics
with highest Coherence Values before flattening out was
chosen. As shown in Table 3, the optimal number of topics
appears to be 5. From the Mallet model, the 5 topics
inferred from the keywords that were linked to the image
features include: Animes about war or battles on earth;
Animes about membership in a club or group; Animes
about love story set in school; Animes featuring songs,
films or videos; and Animes about family life.

Table 3: Number of Topics and Coherence Values

No of Topics Coherence Value

2 0.428

3 0.536

4 0.581

5 0.587

6 0.600

7 0.608

8 0.600

5.4 Model 3: Collaborative Filtering with Singular
Value Decomposition for User Interactions

In Model 3, Singular Vector Decomposition (SVD) based
on Matrix Factorization (MF) is applied to better address
the sparsity issue observed in the reviews data. Under this
approach, MF learns the latent preferences of users and the
latent attributes of items from known ratings (learn features
that describe the characteristics of ratings) which could
then be used to predict the unknown ratings through the dot
product of the latent features of users and items
(Cambridge Spark, 20202).

To apply SVD modelling, the Surprise library was used. As
the Surprise library (Hug, 2015) also offered other
prediction algorithms, to examine if SVD is the best
prediction algorithm as measured by the lowest RMSE
attained, an initial test was run using SVD and 6 other
prediction algorithms (i.e. SVDpp, KNN Baseline, KNN
with Means, KNN Basic, SlopeOne and CoClustering)
with default parameters and 3-fold cross validation. The
initial test revealed that the SVD prediction algorithm
achieved the lowest RMSE as shown in Table 4.

Table 4: RMSE of the 7 Prediction Algorithms Tested

Prediction Algorithm RMSE

SVD 1.872

SVDpp 1.898

KNN Baseline 1.996

KNN Basic 2.182

KNN with Means 2.174

SlopeOne 2.224

Figure 4 – Example of an image with its top-3 similar images

Recommender Algorithm for Japanese Animes

5

CoClustering 2.096

With the SVD model identified as the best prediction
algorithm, a Grid Search with 5-fold cross validation was
conducted to further identify the best hyperparameters with
RMSE and MAE being the evaluation metrics. The best
hyperparameters found which yielded a RMSE of 1.83 and
MAE of 1.40 are:

i. ‘n_factors’: 5

ii. ‘n_epochs’: 5

iii. ‘lr_all’: 0.02

iv. ‘reg_all’: 0.05

5.5 Model 4: Collaborative Filtering with Autoencoder
for User Interaction

In model 4, an autoencoder model was explored
(Rosebrock, 2020). To apply this model, a user-item sparse
matrix first had to be created using both the user rated
animes as well as animes that were not rated by users. For
animes which were not rated by users, they were assigned
a value of 0 in the sparse matrix. However, this introduced
an issue as the minimum rating was 0. Thus, to distinguish
between animes which have not been rated vis-a-vis
animes which were poorly rated, we adjusted the minimum
rating from 0 to a value of 0.1.

The autoencoder model (shown in Figure 5) was built with
the following components:

i. The ‘selu’ activation function was applied to the
encoder layer, latent space, and decoder layer. The
‘selu’ activation function was used to achieve
output that follows a normal distribution, which
would reduce the chances of vanishing or
exploding gradient problem.

ii. The “linear” activation was chosen for the output
layer. “Linear” activation was selected as the
output is a continuous score.

iii. Optimisation of the model was done by using the
Adam optimizer with learning rate of 0.00001.
Adam is fast and has relatively low memory
requirements.

iv. Mean Squared Error (MSE) was chosen as the loss
function as this is not a classification problem
where binary cross-entropy can be used.

A trial-and-error approach was used to perform
hyperparameters tuning to determine the parameters that
gave the lowest validation loss. The number of epochs was
set at 30 with batch size being 64. Deeper models were
considered by adding more dense layers to both the
encoder and decoder to check if the results could be
improved. It was observed that building a deeper model did
not improve the validation loss. Table 5 shows the
validation loss for the different sets of hyperparameters
tested. The best fit autoencoder model was subsequently
used to generate a new set of matrix of user-item
interactions where predictions were made for unknown
ratings.

Table 5: Validation loss for different sets of hyperparameters
EncLayer1:

Dense
LatentSpace:

Dense
DecLayer1:

Dense
Validation

Loss

512 256 512 0.0262

256 128 256 0.0272

128 64 128 0.0279

64 32 64 0.0283

32 16 32 0.0285

512 2 512 0.0287

6. Results

6.1 Leave-one-out method for train-test split

To evaluate the performance of each recommender model,
the Reviews Dataset was split into train dataset and test
dataset where the train dataset was used for model training
while the test dataset was used only for evaluation of
models. Unlike other machine learning applications, a
random train-test split strategy cannot be applied as it
would result in the train dataset having access to recent
reviews made by users while the test dataset contains their
older reviews. This would result in data leakage and the
model will incur a look-ahead bias, thereby unable to
generalise well to unseen data. To avoid the above issue,
the leave-one-out methodology was used across all 5
models during the train-test split where for each user, the
most recent review was used as the test set. The most recent
review for each user was indicated by the largest uid.

6.2 Evaluation of models using Hit Rate @ 10

To provide recommendations for each user, instead of
making predictions for all animes which have not been
rated by the users which is computationally intensive, a
simulation was carried out on a smaller set of 100 animes.
Specifically, for each user, the set of 100 animes was
derived by randomly selecting 99 animes from the list of
animes which the users had not rated before and combining
it with the most recent anime that the user had rated as
captured in the test dataset. Using each of the 5 models,

Figure 5 – Plot of neural network graph of Model 4

Recommender Algorithm for Japanese Animes

6

rating predictions for each of these 100 animes for each
user were derived.

To compare the performance of the recommendations
made across the models, Hit Rate @ 10 evaluation metric
was applied (He et al., 2017). Under this evaluation
criteria, for each model, the top 10 animes with the highest
predicted ratings were extracted for each user. The top 10
animes extracted were matched against the test data to
examine if the most recent rated anime for every user was
captured in the top 10. A hit score (h) of “1” was generated
if a match occurs for each user, otherwise “0”. Thereafter,
the hit rate of each model was derived by taking the sum of
the hit scores across all users divided by the total number
of users, as shown below:

𝑯𝑯𝑯𝑯𝑯𝑯 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒙𝒙 =
∑ 𝒉𝒉𝒖𝒖,𝒙𝒙 𝒖𝒖∈𝑼𝑼

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒐𝒐𝒐𝒐 𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖

where

𝒙𝒙 refers to one of the 5 models

𝒖𝒖 refers to a user

U refers to all users

𝒉𝒉𝒖𝒖,𝒙𝒙 refers to the hit score for user u in model x

To evaluate robustness of each model, the above process of
deriving a list of 100 animes for each user (by randomly
sampling 99 animes and combining it with the most recent
anime rated in the test dataset) and calculating the hit score
of each user was simulated 5 times. The overall hit rate for
each simulation was also derived. Given the 5 simulations,
an average hit rate was derived for each model as shown
below:

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑯𝑯𝑯𝑯𝑯𝑯 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒙𝒙 =
∑ ∑ 𝑯𝑯𝒋𝒋,𝒙𝒙

𝟓𝟓
𝒙𝒙=𝟏𝟏

𝟓𝟓
𝒋𝒋=𝟏𝟏

𝑱𝑱

where

𝒙𝒙 refers to one of the 5 models

𝒋𝒋 refers to a simulation and ranges from 1 to 5

𝑯𝑯𝒋𝒋,𝒙𝒙 refers to the hit score for simulation j and model x

J refers to the total number of simulations

Table 6 shows the hit rates across the 5 simulations as well
as the average overall hit rate for each model. A baseline
model 0 was added as a benchmark. The baseline model
was derived by applying a random selection of 10 animes
from the list of 100 animes to be recommended to users.
As every anime in the list of 100 animes has a 10% chance
to be selected in the top 10 animes to be recommended, the
average overall hit rate for the most recent anime to be
selected for each user is 10%. Based on 5 runs of

simulation, the hit rate of the baseline model 0 was 9.61%.
It was observed that all of the recommender models
outperform the baseline model, with the Autoencoder
model for user interaction (Model 4) yielding the highest
overall average hit rate of 42.97%, meaning that for
42.97% of the users, their most recent rated anime
appeared as one of the recommended top 10 animes. It was
also interesting to note that the average overall hit rate for
the collaborative filtering models (i.e., models that were
trained on the user ratings) were higher as compared to the
content-based filtering models (i.e., models trained on the
synopsis data or the images).

Table 6: Results from Models

Model Average Overall
Hit Rate @ 10

0: Baseline for comparison 9.61%

1: Content Based Filtering with Synopsis
Similarity

20.87%

2a: Content Based Filtering with Image
Similarity

19.52%

2b: Content Based Filtering with Image
Similarity (Transfer learning and
classification)

18.92%

3: Collaborative Filtering: SVD based on
User Ratings

29.13%

4: Collaborative Filtering: Autoencoders for
User Interaction

42.97%

Figures 6 to 10 show the hit rate for each simulation of each
model. Across all models, the results are robust. In Model
1 (content-based filtering with synopsis similarity), the hit
rate ranges from 20.1% to 21.7%, with a standard deviation
of 0.006. In Model 2a (content-based filtering with images
similarity using transfer learning), the hit rate ranges from
18.4% to 20.9%, with a standard deviation of 0.009. In
Model 2b (content-based filtering with images similarity
using transfer learning and classification task), the hit rate
ranges from 17.9% to 19.5%, with a standard deviation of
0.005. In Model 3 (collaborative filtering with SVD for
user interactions), the hit rate ranges from 25.2% to 30.4%,
with a standard deviation of 0.03. In Model 4 (collaborative
filtering with autoencoder for user interactions), the hit rate
ranges from 41.9% to 45.2%, with a standard deviation of
0.01. While a higher standard deviation was observed in

Recommender Algorithm for Japanese Animes

7

models 3 and 4 compared to models 1 and 2, the hit rate @
10 across all simulations in models 3 and 4 were
consistently higher than that of models 1 and 2. Overall,
the results are robust and suggest that collaborative
filtering models outperformed content-based filtering
models.

7. Insights gained while applying machine
learning models

7.1 Feature generation: Pretrained model weights
might lead to better performance when training
data is lacking

For the content-based filtering with image similarity, an
initial model utilised the autoencoder network structure as
well as image augmentation to obtain latent features at the
bottleneck layer. However, in terms of image similarity,
the pre-trained ResNet50 model (Model 2a) led to better
model performance as compared to using autoencoders for
feature generation. The reason for this was because
ResNet50 was trained with more than 1 million images
from ImageNet whereas there were only around 17000
anime images for training with the autoencoder
architecture. Therefore, Model 2a could extract better high-
level features even though it did not use anime images for
training.

7.2 Collaborative Filtering Models vs Content Based
Filtering Models

As highlighted in the results, the collaborative filtering
models performed better as compared to the content-based
filtering models. One possible reason is because
collaborative models utilize information based on other
users to predict if a particular user would like the anime,
while content-based models only make use of an
individual’s ratings and similarity between the animes
based on the synopsis or images. As such, the content-
based models are limited by the number of reviews that
each user has provided.

In addition, under content-based filtering, it was observed
that the cosine similarity score between each anime and its
most similar anime derived using synopsis data was
generally low, with the cosine similarity score at the 75th
percentile being 0.068. Figure 11 shows that the
distribution of the cosine similarity score is right skewed.
The poor similarity scores could be a factor driving the
lower average overall hit rate for model 1.

On the other hand, while the cosine similarity score derived
using images are generally higher (Figure 12), the average

Figure 6 – Hit rate @ 10 for all simulations of Model 1

Figure 7 – Hit rate @ 10 for all simulations of Model 2a

Figure 9 – Hit rate @ 10 for all simulations of Model 3

Figure 10 – Hit rate @ 10 for all simulations of Model 4

Figure 8 - Hit rate @ 10 for all simulations of Model 2b

Recommender Algorithm for Japanese Animes

8

overall hit rate remains low. This suggests that the visual
appeal of animes play a lesser role in users’ decision of
whether to watch an anime.

Beyond the higher hit rates, collaborative filtering
approaches were found to be more efficient compared to
content-based filtering approaches.

7.3 Collaborative Filtering Models: Autoencoders
performed better than SVD

SVD models are linear models which are unable to capture
complex nonlinear and intricate relationships that can be
predictive of users’ preferences. An autoencoder is a neural
network that learns to copy its input to its output to encode
the inputs into a hidden (and usually low-dimensional)
representation and it is proven to be capable of
approximating any continuous function, making it suitable
for addressing the limitation of matrix factorization and
enhancing the expressiveness of matrix factorization. It is
also widely used for its outstanding performance in data
dimensionality reduction, noise cleaning, feature
extraction, and data reconstruction. Thus, the autoencoder
was able to perform better than SVD possibly due to its
ability to learn the non-linear user-item relationship
efficiently and to encode complex abstractions into data
representations (Ferreira et al, 2020).

7.4 Future Directions

Although the average overall scores remained low across
all models (i.e., below 50% hit rate), the performance still

exceeded the baseline model of random recommendation.
This suggests that there is still value in each of the
recommender algorithms developed. The lower than 50%
hit rate is likely attributed to a relatively small dataset
(75,000 reviews). With a larger dataset, the predictive
power of the model is likely to improve.

Between the content-based filtering and collaborative
filtering approach, although the models that utilized
content-based filtering did not achieve the highest overall
hit score, these models could probably be used to augment
the autoencoder model for user ratings such that a hybrid
recommender system could be implemented. This would
allow a greater variety of data types to be used as inputs for
the recommender system which in turn, would make it
more robust. Specifically, a hybrid recommender system
could prove to be useful in scenarios where users are not
inclined to provide ratings, or where users’ engagement
with the platform lean towards reading of synopsis or
browsing via images.

8. Conclusion

This project set out to develop a recommender system
using collaborative and content-based filtering methods
that incorporate unstructured data (i.e., synopsis and anime
cover images) as well as structured data (i.e., user-item
ratings). A total of five models were used to generate
recommendations to users and it was found that the
Autoencoder model for user interaction achieved the
highest hit rate across the five models. In terms of the
application of machine learning, several insights were also
gained where: (i) Pretrained model weights could lead to
better performance in feature generation if training data is
lacking; (ii) Collaborative filtering models might perform
better as content based models are limited by the amount
of reviews available; (iii) Autoencoders could perform
better than SVD as it is able to learn from non-linear user-
item relationships and could encode complex abstractions
into data representations.

The code implementation of this report can be found on this
link:
https://github.com/WJIE08/Recommender_Algorithm_Ja
panese_Anime

References
Anime-Planet (2021) https://www.anime-

planet.com/anime/recommendations/

Amazon. (2019). The history of Amazon’s
recommendation algorithm.
https://www.amazon.science/the-history-of-amazons-
recommendation-algorithm

Cambridge Spark. (2020). Implementing your own
recommender Systems in Python.

Figure 11 – Distribution of the Cosine Similarity Score of
anime pairings derived using synopsis

Fr
eq

ue
nc

y

Figure 12 – Distribution of the Cosine Similarity Score of
every anime pairings derived using images

https://github.com/WJIE08/Recommender_Algorithm_Japanese_Anime
https://github.com/WJIE08/Recommender_Algorithm_Japanese_Anime
https://www.anime-planet.com/anime/recommendations/
https://www.anime-planet.com/anime/recommendations/
https://www.amazon.science/the-history-of-amazons-recommendation-algorithm
https://www.amazon.science/the-history-of-amazons-recommendation-algorithm

Recommender Algorithm for Japanese Animes

9

https://blog.cambridgespark.com/nowadays-
recommender-systems-are-used-to-personalize-your-
experience-on-the-web-telling-you-what-
120f39b89c3c

Ferreira, D., Sofia, S., Antonio, A., & Machaco, J. (2020).
Recommendation System Using Autoencoders.
Applied Sciences, 10, 5510.

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T-S.
(2017). Neural Collaborative Filtering. In
Proceedings of WWW '17, Perth, Australia, April 03-
07, 2017.

Hug, N. (2015). Surprise Documentation for Model
Selection Package.
https://surprise.readthedocs.io/en/stable/model_selecti
on.html

Jain, S. (2020). Ultimate guide to deal with Text Data
(using Python) – for Data Scientists and Engineers.
https://www.analyticsvidhya.com/blog/2018/02/the-
different-methods-deal-text-data-predictive-python/

McCallum, A. (2002). Mallet Documentation for Topic
Modeling. http://mallet.cs.umass.edu/topics.php

MyAnimeList (2021) https://myanimelist.net/

MyAnimeList Dataset. (2020).
https://www.kaggle.com/marlesson/myanimelist-
dataset-animes-profiles-reviews

Netflix. (2020) Netflix Research.
https://research.netflix.com/research-
area/recommendations

Ricci, F., Rokach, L., Shapira, B., & Kantor, P. B. editors.
Recommender Systems Handbook. Springer, 2011

Rosebrock, A. (2020). Autoencoders for Content-based
Image Retrieval with Keras and TensoryFlow.
https://www.pyimagesearch.com/2020/03/30/autoenc
oders-for-content-based-image-retrieval-with-keras-
and-tensorflow/

Wrg, A. (2020). Image recommendation engine with
Keras. https://towardsdatascience.com/image-
recommendation-engine-with-keras-d227b0996667

https://blog.cambridgespark.com/nowadays-recommender-systems-are-used-to-personalize-your-experience-on-the-web-telling-you-what-120f39b89c3c
https://blog.cambridgespark.com/nowadays-recommender-systems-are-used-to-personalize-your-experience-on-the-web-telling-you-what-120f39b89c3c
https://blog.cambridgespark.com/nowadays-recommender-systems-are-used-to-personalize-your-experience-on-the-web-telling-you-what-120f39b89c3c
https://blog.cambridgespark.com/nowadays-recommender-systems-are-used-to-personalize-your-experience-on-the-web-telling-you-what-120f39b89c3c
http://dl.acm.org/citation.cfm?id=3052569
https://surprise.readthedocs.io/en/stable/model_selection.html
https://surprise.readthedocs.io/en/stable/model_selection.html
https://www.analyticsvidhya.com/blog/2018/02/the-different-methods-deal-text-data-predictive-python/
https://www.analyticsvidhya.com/blog/2018/02/the-different-methods-deal-text-data-predictive-python/
http://mallet.cs.umass.edu/topics.php
https://myanimelist.net/
https://www.kaggle.com/marlesson/myanimelist-dataset-animes-profiles-reviews
https://www.kaggle.com/marlesson/myanimelist-dataset-animes-profiles-reviews
https://research.netflix.com/research-area/recommendations
https://research.netflix.com/research-area/recommendations
https://www.pyimagesearch.com/2020/03/30/autoencoders-for-content-based-image-retrieval-with-keras-and-tensorflow/
https://www.pyimagesearch.com/2020/03/30/autoencoders-for-content-based-image-retrieval-with-keras-and-tensorflow/
https://www.pyimagesearch.com/2020/03/30/autoencoders-for-content-based-image-retrieval-with-keras-and-tensorflow/
https://towardsdatascience.com/image-recommendation-engine-with-keras-d227b0996667
https://towardsdatascience.com/image-recommendation-engine-with-keras-d227b0996667

	Recommender Algorithm for Japanese Animes

