
BT5153 Group 10 Project
Review Quality Based Recommendation for Yelp

Bryce Lee Zheng Hui (A0124294H) 1 Liu Yue (A0218913A) 2 Mai Peihua (A0218951Y) 3

Tang Yin (A0218854W) 4 Wu Lingyun (A0218846U) 5

Github Repository:

https://github.com/Whalelingyun/
BT5153-Group10-yelp

1 Introduction
With the convenience brought by Internet and the massive
amount of available information, people tend to find a review
of a business before they decide to visit it. As the most
widely used online review site in the North America, Yelp
enables customers to read and write reviews to offer their
insights based on their experience with the business. In
addition to sharing their own opinions, visitors can also
search for a business by name, by category, or by location
and can view the reviews posted by others online.

Containing lots of information of businesses, users, reviews
and interactions among them, Yelp attempts to solve com-
mon user problems like “What should I eat today?” by
presenting available options to users. However, Yelp only
provides visitors with a holistic view about a business. On
the business’s main page, an average rating score is shown
under the name of the business, and only 5 reviews among
thousands of reviews are selected and presented on the page.
Since the quality level of user-created-contents is not uni-
form, it is tedious and error-prone for Yelp to filter and
rank useful information. Moreover, since every customer
has his/her own personal preference, it is likely that the
businesses shown on the default main page are unsuitable.
This means that finding useful reviews and satisfactory busi-
nesses might be time-consuming for Yelp visitors, which
can lead to decreased user willingness to use Yelp. Hence,
our project aims to bring business benefits and commercial
usefulness to both Yelp and its users.

2 Project Objectives
Our primary objective is to develop a personalized recom-
mendation system based on review quality. The quality of
reviews might be associated with the rating’s authenticity,
and thus can be put into the recommendation framework to
improve the performance of rating prediction. (Raghavan

et al., 2012) To build such recommendation system, we pro-
posed a two-stage model. In the first stage, we predicted
the helpfulness of the user’s review through classification
models. In the second stage, the estimated probability was
used to develop our recommendation system.

The first stage focused on evaluating new reviews to deter-
mine if it is of high quality, based on its text and non-text
features. Though the helpfulness of the reviews can be eval-
uated by the votes they received, for more recent reviews
without sufficient feedback, the number of votes might not
reflect the real quality of the reviews. Therefore, a classi-
fication model is entailed to predict the helpfulness of the
latest reviews. Besides being pushed into the pipeline as
user metadata and used to build our recommendation sys-
tem, the helpfulness prediction will help platform prioritise
these reviews to be shown to users.

In the second stage, we focused on building a personalized
recommendation system which will show users businesses
and reviews that are more aligned with their taste and pref-
erences. This would aid users in making quicker and better
decisions. We proposed a pipeline which incorporates con-
textual and text sentiments, along with other non-textual
features, into decision-making. With an improvement in per-
formance and tailor-fitted journey, we aim to help reinforce
brand loyalty of users and further boost Yelp’s revenue from
the perspective of higher user usage.

3 Datasets

3.1 Data

We used the Yelp Open Dataset (source: https://www.
yelp.com/dataset) from October 2004 to February
2020 downloaded from yelp website, which is composed of
5 json files —- Business, Review, User, Checkin and Tip.
We chose 3 sub datasets covering information of businesses,
reviews and users. Checkin table was eliminated since it
is not essential for our project, and Tip table was not used
because it’s a subset of Review table.

Figure 1 illustrates the relationship across three Yelp tables.
Feature linkages among tables are indicated by grey lines.

https://github.com/Whalelingyun/BT5153-Group10-yelp
https://github.com/Whalelingyun/BT5153-Group10-yelp
https://www.yelp.com/dataset
https://www.yelp.com/dataset

Source Table Variable Name Data Type Variable Description

Business Stars Float Star rating, rounded to half-stars
Business is Open Integer 0 or 1 for closed or open
Business Attributes Object Business Attributes to values
Business Categories String An array of strings of business categories
Review, User Useful(Funny/Cool) Integer Number of useful (funny/cool) votes received
User Friends Array of strings An array of the user’s friend as user ids
User Fans Integer Number of fans the user has
User Elite Array of integers The years the user was elite
User Compliment hot

(more/profile/cute,etc)
Integer Number of hot(more/profile/cute) compliments

received by the user

Table 1. Yelp Dataset Description

Business table contains 14 variables with a total of 209,393
observations, including location data, attributes and cate-
gories, etc. Review table contains 9 variables with 8,021,122
review instances including review text data, the user id that
wrote the review and the business id the review was written
for. User table contains 22 variables with 1,968,703 users’
data, which includes the user’s friend mapping and all the
metadata associated with the user. Table 1 explains some
non-common features in Yelp dataset. By joining 3 tables,
there are a total of 43 variables and 8,021,122 records.

Figure 1. Overall Dataset Structure

However, 8 million records was too memory intensive and
time consuming for our future modelling, we reduced the
number by filtering. Firstly, we filtered out the businesses
which are closed, leaving only those that are still in opera-
tion. Next, we extracted out businesses that are tagged as
“Restaurant” under categories. Lastly, we focused on the
state of Nevada since the restaurants in Nevada are widely
distributed and are almost evenly located as shown in Figure

2. Nevada also has the most reviews among all the states in
Yelp. Finally, this left us with a total of 1,410,254 records.

Figure 2. Lat-Long Plotting For Nevada

3.2 Exploratory Data Analysis

Before diving into model development, we conducted pre-
liminary data exploration with our dataset. We explored the
star rating distribution of both reviews and businesses in
Figure 3. Most reviewers gave 5-star ratings to restaurants,
while the star rating distribution of businesses is significantly
left skewed, which reveals that there are a lot of high-rated
restaurants in the dataset. This made our recommendation
even more complicated since sorting the restaurant by star
rating will be ineffective. Under this situation, business
rating can serve as a guideline but is not entirely indicative
of user’s individual score for the business. By deep diving
into reviews, Figure 4 shows the density distribution and
cumulative distribution of the number of votes reviews re-
ceived. As close to 80% of reviews received 2 votes, we
defined reviews with votes greater than 2 as high-quality
reviews later in our models.

4 Classify High-quality Reviews on Yelp
We grouped the filtered dataset by the review years, and
found out that reviews posted in 2018 and 2019 occupied

2

Figure 3. Star Rating Distributions

Figure 4. Review Deep Dive

the majority of the dataset, each with around 250,000 data
points. Therefore, reviews and related information posted
in 2018 and 2019 were selected as our training and testing
sets, respectively.

4.1 Variables

4.1.1 TARGET VARIABLE

Online review sites depend heavily upon the content users
provide. However, it is hard to quantify and label the quality
of a review. Therefore, we decided to utilise the user voting
system that Yelp introduced, which allowed users to upvote
each other’s review if the review is “useful”, “funny” or
“cool”. In this project, reviews are considered high-quality
if total upvote count is greater than two and low-quality if
upvote is fewer than or equal to two. By applying this classi-
fication approach, we obtained 216,034 low-quality reviews
and 38,279 high-quality reviews in 2018, and 209,015 low-
quality reviews and 37,983 high-quality reviews in 2019.

We understand that these labels are subjective and may
contain bias where high-upvote reviews get more and more
upvotes and low-upvote/new reviews have little attention.
This issue could potentially be rectified by our classification
model where reviews are recalled based on both non-text
and text features.

4.1.2 PREDICTOR VARIABLES

Non-text Features

Figure 5 illustrates correlation between all potential predic-
tor variables and target variable. As shown in the correlation
map, the activeness of a Yelp user is highly correlated to
his/her review quality. Therefore, when extracting features
to classify high-quality reviews, Yelp user details and busi-

ness information were taken into consideration. There are 4

Figure 5. Correlation Map

engineered features. Active duration of user was calculated
as number of months between review date and the first date
user joined Yelp. Elite status of user was updated to a binary
variable where the status is one if a user was rewarded an
elite title at least once. Elite count records total number
of years that a user got elite. Top 184 frequently appeared
categories were kept in business category as we found that
some businesses associate irrelevant categories with them,
maybe intend to improve public exposure. Standardization
was applied to all continuous variables. Some additional
examples of non-text features are:

• Cumulative upvotes that author received

• Number of funs that author has

• Average rating that business received

• Total review count of business

• Review star

Text Features

Review content is unstructured text data that requires pre-
processing. Multiple text cleaning techniques such as spe-
cial symbol removing, lowering, stopwords removing and
punctuation removing were explored. Text pre-processing
tools provided by NLTK package were heavily used in text
pre-processing and text feature extraction.

After the initial pre-processing, we explored the content
preliminary by using the word cloud tool to see if any spe-
cific words are frequent in each category. Word clouds of
the two categories of reviews in 2018 are shown in Figure

3

6, suggesting that both categories have similar topics and
frequent words. We observed an almost identical result for
reviews in 2019 as well.

Figure 6. Word Cloud of 2018 Reviews

Beside the content, we would also like to find out if high-
quality reviews and low-quality reviews have difference in
sentiment. In addition, one hypothesis is that high-quality
reviews have more adjective words than low-quality reviews.
As a result, we extracted text features in the following cate-
gories:

• Structural features (eg. Length of review, wordcount)

• Lexical features (term-document matrix. eg. TF-IDF,
Bag-of-Words)

• Syntactic features (eg. Percentage of verbs, nouns, top
frequent words)

• Sentiment scores

We obtained the length and word count for each review and
compared the average results of both categories. For both
reviews posted in 2018 and 2019, the lengths of reviews are
around 875 for high-quality reviews and 427 for low-quality
reviews; the text count of low-quality reviews is around 79,
while the count of high-quality reviews is about 2 times of
it. Therefore, we can declare that the length and text count
have obvious difference for two categories.

Sklearn’s feature extraction package was used to generate
term-document matrix such as Bag of Words and TF-IDF.
We applied this technique to the cleaned review content, as
well as to only frequently appeared words. We also exam-
ined the POS tagging results obtained for the two categories.
In both years, the percentage of each tag is almost identical
(Figure 7).

In addition, to investigate if polarity and intensity of senti-
ment exist in each review, sentiment analysis using VADER
(Valence Aware Dictionary for Sentiment Reasoning) model
was deployed for reviews in both 2018 and 2019. VADER
is a lexicon and rule-based sentiment analysis tool that is
specifically attuned to sentiments expressed in social me-
dia and suitable for both polarity and intensity of emotion.

Figure 7. POS Tagging for high and low quality reviews

Since Yelp is a social media platform and reviews posted
by users may contain non-standard expressions that only
applicable on the Internet, we deem VADER is an appro-
priate tool to use in our context. The resulted sentiment
scores range from -1 to 1, indicating not only the positivity
and negativity of a text, but also how positive or negative
the sentiment is. As we can see from Figure 8, the distribu-
tions of sentiment scores for high-quality and low-quality
reviews are similar in 2018 and 2019, both having massive
reviews with highly positive sentiment. As the sentiments of
both categories are similar, we deem sentiment differences
may not be significant for our scenario and hence excluded
sentiment as one of the features for our models.

Figure 8. Sentiment Scores of Reviews in 2018 and 2019

4.2 Models

We identify this task as a supervised binary classification
problem, with reviews being labelled as high-quality or low-
quality depending on a predefined upvote count threshold.
To effectively classify high-quality reviews, we first utilized
NLP techniques to extract features from review text, before
applying proper classification model on text-based features
and user/business metadata features.

Common classification techniques such as Logistic Regres-
sion, KNN and Random Forest were implemented as base-

4

line models. Hyperparameter tuning using grid search cross
validation were conducted to enhance model performance.
We also consider utilizing Naı̈ve Bayes Classifier. Naı̈ve
Bayes Classifier is a probabilistic machine learning model,
and it has been proven to be efficient and effective when
dealing with large text content and big term-document ma-
trix. Therefore, Naı̈ve Bayes model was also applied to text
only features for evaluation comparison.

Three boosting models — XGBoost, LightGBM and Cat-
Boost models were used. Boosting method is essentially
an ensemble method. It is an extension to the classical
Decision Tree Classifier which trains models in a gradual,
additive and sequential manner. By combining with pre-
vious models, the best possible next model minimizes the
overall prediction error through setting target outcomes. The
target outcome of each iteration is based on how much the
prediction impacts on the overall prediction error. Boosting
method generally has high accuracy but low explainability.
XGBoost, LightGBM and CatBoost are all advanced boost-
ing algorithm. They differentiate themselves by splits, leaf
growth, missing value handling and categorical feature han-
dling. These differences leads to slight performance delta.
For example, LightGBM has the fastest training speed be-
cause it offers gradient-based one-side sampling (GOSS).
Moreover, in some scenarios, CatBoost outperforms the rest
because of its unique encoding for categorical features.

4.3 Classification Evaluation

As shown in Section 4.1.2, text features have similar distri-
bution for both high-quality and low-quality reviews. Hence,
we first trained all models using non-text features in training
set and evaluated the testing set based on accuracy, AUC,
precision, recall and F1 score. Grid search cross validation
was conducted on the training set for parameter tuning. Ta-
ble 2 shows the evaluation result. We observed that three
boosting models – XGBoost, Light GBM and CatBoost
outperform the rest. XGBoost model performed the best
in terms of accuracy (0.893), AUC (0.899), recall (0.411)
and F1-score (0.542). The classification model worked very
well on non-text features. Activeness of user is the main
contributor.

Text extracted features were then added in predictive vari-
ables. Multinomial Naı̈ve Bayes classifier was applied to
term-document matrix and serves as a baseline model. We
chose the top-performing model – XGBoost and compared
its performance on different combination of non-text and
text features. Evaluation result is shown in Table 3. We
noticed that even though there were some improvement
after adding text extracted features, the improvement is
very minimal, which also proves that there’s no significant
text difference between high quality & low quality review
content. Resampling technique is explored and applied to

Accuracy ROC
AUC

Precision Recall F1-
score

Multinomial
NB

0.872 0.688 0.630 0.401 0.490

Gaussian
NB

0.871 0.771 0.901 0.179 0.298

Logistic Re-
gression

0.878 0.771 0.809 0.268 0.403

KNN 0.873 0.715 0.700 0.306 0.426
Random
Forest

0.884 0.844 0.827 0.310 0.451

XGBoost 0.893 0.899 0.800 0.411 0.542
Light GBM 0.891 0.893 0.841 0.363 0.507
CatBoost 0.891 0.893 0.839 0.361 0.505

Table 2. Evaluation: Non-text features

non-text & text stats features only. This is because resam-
pling method typically works bad in high dimensional data
as the linear relationship of clusters does not maintain. After
applying random oversampling, recall improves to 0.74 and
F1-score increases to 0.59. However, precision drops to
0.496. Precision and recall is always a tradeoff and it is up
to business consideration to select the best acceptable result.
In our project, since we will apply predicted high-quality
review in recommendation system, we chose XGBoost with
top 20 features (with highest accuracy) as our final model.

5 Customized Recommendation
The predicted review quality in the previous section was
used to develop our customized recommendation model.
Figure 9. is an overview of the pipeline and data flow within
the system. We use a combination of content-based and col-
laborative filtering methods, performed sequentially, to build
a hybrid recommendation system. Firstly, the content-based
method is applied to generate candidate restaurants for users.
Then based on the candidate pool, we predicted the rating
the user will give to each restaurant through collaborative
filtering method. The top N business with highest predicted
rating will be shortlisted as our final recommendation.

Figure 9. Recommendation System Overview

5.1 Candidate Generation

The recommendation model begun by generating a pool of
restaurant candidates under content-based filtering. In this
stage, we analysed text features in restaurant reviews and

5

Accuracy ROC AUC Precision Recall F1-score

Multinomial NB: Text only 0.805 0.671 0.371 0.387 0.379
XGB: Non-text 0.893 0.899 0.800 0.411 0.542
XGB: Non-text + TextStats 0.894 0.903 0.786 0.432 0.557
XGB: Non-text + TextStats + Smote 0.894 0.900 0.777 0.438 0.560
XGB: Non-text + TextStats + RandomOver 0.844 0.901 0.496 0.737 0.593
XGB: Non-text +TextStats +Text 0.894 0.903 0.789 0.426 0.553
XGB: Top 20 features 0.895 0.903 0.790 0.430 0.557

Table 3. Final Evaluation

the categories that restaurants were being tagged with. Prior
to creating Bag-of-Words (BOW) for the model, certain
measures were taken to ensure that contextual meaning and
sentiments would be retained as much as possible after
words have been vectorized i.e., expanding contractions,
retaining negative stop words. Trigrams were also captured
during the CountVectorizer process.

The model ingested inputs from two different data-set; one
comprising only of restaurant data selected by/for the user
and the other for the rest of the historical restaurant data.
Similarity matching between these two data-sets were com-
puted using correlation similarity for two features: reviews
and categories. Thus, for the user selected restaurant, two
correlation similarity values (review and categories) were
generated separately with the other individual restaurants.
By taking the mean of these correlation similarity, we were
able to utilise the averaged score to rank restaurants’ simi-
larity to the user selected restaurant, keeping in mind that a
large correlation value represents higher similarity.

Corr. Simmean =
Corr.Simc × Corr.Simr

2
(1)

With this ranking, we select a pool of restaurant candidates
according to a set of standards, passing this pool down the
pipeline for collaborative filtering and rating prediction i.e.,
select top 50 restaurants with highest correlation similarity,
which may be interpreted as restaurants being sufficiently
similar, and let it pass to the next stage of processing.

5.2 Rating Prediction

We develop a collaborative filtering framework based on
review quality to predict the users’ unknown preference,
which is denoted by the rating they will give to a specific
item. The rating prediction is composed of 3 phases: (1)
construct the user-restaurant interaction matrix; (2) com-
pute pairwise user similarity; (3) predict user’s rating to the
shortlisted restaurant.

5.2.1 INTERACTION MATRIX CONSTRUCTION

Restaurant Clustering

To address data sparsity and high dimension problem, we ap-

ply clustering algorithms to partition the restaurants. Table
4 gives the features to conduct the classification. The follow
techniques are used in feature generation and engineering.

Features Type Description

Latitude Coordinate Latitude of the business.
Longitude Coordinate Longitude of the business.
LDA i LAD

Score
LDA score of topic i. The LDA
score for business is the average of
that for each review.

Cat i Category Category i, 1 when the restaurant
belong to the category, otherwise 0.

Avg. Rat-
ing

Average
Rating

Average rating of all the reviews in
the training set for the business

Table 4. Features for Business Clustering

• Latent Dirichlet Allocation (LDA)

We leverage LDA topic modelling to discover the hidden
topics across reviews. After removing non-alphabetic char-
acters and deleting stop words including common words like
“restaurant”, we trained the LDA model on all the restaurant
reviews.
One important hyperparameter for the model training is the
number of topics, which is determined by Kullback-Leibler
(KL) divergence and the reasonability of the word distribu-
tion. KL divergence measures the difference between words
distribution in two topics with the following formula:

D (P ||Q) =
∑
i

P (i) log
P (i)

Q (i)
(2)

From the formula, we know that the higher the divergence
value, the more separated the two topics. We choose the
topic number that would maximize the average KL diver-
gence. From Figure 10, we noticed that LDA model with
around 12 topics gives better performance as demonstrated
by the larger proportion of light cells. Figure 11 shows
the word cloud for two selected topics when the number of
topic is 12. We clearly observe that the two topics focus on
different aspects of the restaurants. The result looks sensible
and we finally chose 12 as our topic number.

• Word2Vec & K-means Cluster
6

Figure 10. KL Divergence Score for 6 Different Topic Models

Figure 11. Word Clouds of Top 100 Keywords for Model with 12
Topics (2 Examples)

Each business belongs to one or more categories, and there
are 546 categories in total. To reduce feature dimensionality,
we applied Word2Vec and K-means algorithm to grouping
similar categories. Specifically, for every category we vec-
torized the words through Google’s pretrained Word2Vec
and average the context vectors. Then we implemented
K-means clustering on the vectorized data with manual
fine-tune.
By examining the clustering result, we observed that cluster
number of 250 gives reasonable output since the categories
within each cluster are almost similar to others, as opposed
to a lower value of cluster number that groups too many
unrelated categories together. Therefore, we determined
our final number of clusters as 246 and adjusted some
misclassified categories manually after K-means clustering.

Our processed features are normalized and fed into three
cluster models: K-means, hierarchical clustering and GMM.
We determined the number of clusters for each model re-
spectively through silhouette score. Table 5 shows our hy-
perparameters for three clustering models.
Based on the clustering results, we constructed the user-
business preference matrix. The user’s preference towards a
particular business cluster is the average of their score on
all businesses within that cluster.

Sentiment Analysis on Review

To evaluate user’s preference on each item, we leverage
both actual rating and sentiment scores computed from the
reviews. Rating given by the user is a coarse evaluation
of user’s attitude on the business and may not reflect their

Model Number of Cluster Silhouette Score

K-means 250 0.193
hierarchical clustering 1300 0.244

GMM 280 0.208

Table 5. Number of Clusters and Corresponding Silhouette Score
for Different Model

fine-grained opinions.(Pero and Horváth, 2013) Table 6 in-
dicates that users might overrate or underrate the restaurants
compared to their reviews.

To make use of the opinions expressed in the reviews, we
integrate sentiment analysis to construct the preference ma-
trix. We retrieved the polarity score from TextBlob for each
cleaned review, and rescaled the polarity score to 1-5 based
on the distribution of actual ratings.
Through opinion mining, we were able to construct two
user-business preference matrices, rating matrix and opin-
ion score matrix.

Auto Encoding

To fill in the missing values in the interaction matrix, we
apply autoencoder to infer user’s preference over unrated
business. The hyperparameter for the model is given by
figure 7.

5.2.2 USER SIMILARITY AND RATING PREDICTION

User Similarity

We compute the pairwise user similarity based on the two
matrices respectively. The cosine similarity is chosen as our
metric with the following formula:

si,j =
~i×~j∣∣∣∣∣∣~i∣∣∣∣∣∣ ∣∣∣∣∣∣~j∣∣∣∣∣∣ (3)

Based on the cosine similarity, we chose the 50 nearest
neighbours for each user to estimate their preference score
over particular items.

Review Quality

The prediction in the review quality classification were used
to enhance our recommendation model. The quality of the
review is measured by its predicted probability to be helpful.
We have tried the following two methods to incorporate
review quality into our model:

• use quality scores as weights when taking the average
of the neighbour’s rating;

• filter out the low quality reviews.

The first method resulted in inferior performance to the
baseline model, while the second approach leads to higher

7

User Business Rating Opinion Score Review

U1 B1 4 5 Quick and delicious. I had the three cheese crepe which was
savory and flavorful. Decent prices by Vegas standards.

U2 B2 4 3 My lobster was a little overcooked, prices are a little high, and
the side of coleslaw was pathetically small. But the food was
good (I had a beltway), and it was a nice treat to have a fat
lobster roll, so far from maine.

Table 6. Examples of User Rating and Reviews

Parameter Size of Encoder Size of Latent Space Size of Decoder

No Cluster 512 256 512
Hierarchical Cluster 512 256 512

K-means 150 75 150
GMM 150 75 150

Table 7. Hyperparameters of Autoencoder for Different Clustering Models

accuracy compared to the case when we make no use of
the review quality. It can be inferred that the reviews with
extremely low quality might not be genuine, so removing
them could make an impact on the model performance. But
the normal and high quality reviews make little difference
since both of them reflect authors’ honest evaluation on the
business.
Therefore, we chose the second method to build our
helpfulness-enhanced model. After cross validation, we
set 0.01 as the threshold for the quality score.

Rating Estimation

Based on the similar users’ trustful ratings and reviews,
we estimate the user’s rating and opinion score towards a
particular restaurant. The formula is given as follows:

Pu,i =

∑
j∈U rj,i × sj,u∑

j∈U sj,u
(4)

Where Pu,i denotes user u’s preference to business i, U
denotes all the neighbour users, rj,i denotes user j’s rating
or opinion score on business i, sj,u denotes the similarity
between user u and j.

The final predicted rating of user u for business i is the
average of preference scores estimated through the rating
and opinion score matrix.

5.2.3 EVALUATION

To evaluation the collaborative filtering methods, we con-
ducted train-test split by defining the reviews after 2019-06-
30 as the testing set. The prediction accuracy is evaluated
by R-square and RMSE. Table 8 gives the performance

under different methods. We observed that removing un-
helpful reviews and incorporating sentiment analysis could
improve the accuracy. We finally chose the method based
on K-means cluster to build our recommendation system.

5.3 Final Recommendation

We finally recommend top 10 restaurants based on predicted
rating score from the candidate pool. The overall recom-
mendation system is evaluated in the following sections.

5.3.1 EVALUATION METRICS

We use four different metrics to evaluate our recommenda-
tion system.

Satisfaction measures users’ attitudes towards the recom-
mended restaurants. We define satisfaction as the average
rating the user give to the recommended business that they
visited after our recommendation. This metric focus on the
businesses appearing in both the recommendation list and
testing set as we are not sure about users’ preference over
the restaurants not visited by them. Along with satisfaction,
we present the number of intercept business to show the size
of our evaluation base.

Diversity measures how dissimilar the products in recom-
mendation lists are. For each recommendation list, the
diversity of recommendation for user u is defined as the
average of pairwise dissimilarity between items with the
following formula:

Du =

∑N−1
i=1

∑N
j=i+1(1− similarity(i, j))

N(N + 1)
(5)

8

No Filter Remove Unhelpful Reviews
Method R2 RMSE R2 RMSE

No Cluster (Rating Matrix Only) 0.103 1.395 0.115 1.386
No Cluster 0.125 1.379 0.137 1.369

K-means Cluster 0.125 1.379 0.139 1.368
GMM Cluster 0.125 1.379 0.138 1.368

Hierarchical Cluster 0.119 1.383 0.120 1.382

Table 8. Performance for Rating Prediction Under Different Collaborative Filtering Models. Noted that “No cluster (rating matrix only)”
merely uses rating matrix, other methods apply both rating and opinion matrix.

We take the average of all the user’s diversity to obtain the
overall diversity.(Garcia Esparza et al., 2011)

Personalization measures the similarity between user’s lists
of recommendations. It is given by the average of the pair-
wise cosine similarity between each vectorized recommen-
dation list.A lower value of the score indicates a higher
extent of personalization.

Coverage measures the ability of our recommendation sys-
tem to recommend as many products as possible.(Garcia Es-
parza et al., 2011) It is defined as the number of unique
items in the recommendation list divided by the number of
unique items in the training set. An ideal customized rec-
ommendation system should be able to cover a wide range
of products instead of just recommending popular items.

Our primary objective is to retain an acceptable satisfaction
score. At the same time, we aim to balance the diversity,
personalization and coverage of our recommendation model.

5.3.2 RESULTS AND ANALYSIS

We first formed a general recommendation for comparison.
For the baseline model, we shortlist the restaurants with
average rating equal to 5 and total review counts larger than
50, and randomly selected 10 businesses from the pool for
recommendation. Then we simulated the recommendation
using the current customized model with different number of
candidate restaurants, and compared them with the general
one.

Table 9 shows the results of our evaluation. In terms of
satisfaction, our model has lower score compared with the
general recommendation, which is expected since the gen-
eral one only focus on the popular business. On the other
hand, the average rating of all the reviews in the testing set
is 3.809, indicating that customers are more satisfied with
the business recommended by our model.

In terms of personalization and coverage, our recommenda-
tion system outperforms the baseline model. By tailoring to
the customer’s preference, our model could reach a wider
range of products rather than only focusing on the well-

known and high-rated items. It can be observed in the table
that narrowing down the candidate pool could improve these
two scores, implying that the content-based stage plays an
importance role to make personalized recommendation.

Finally, we noticed that our recommendation system has
poor diversity compared with the baseline model. It can be
inferred that the overspecialization problem of the content-
based approach results in similar items that seldom jump
outside the user’s content profile.

6 Business Application
The proposed Yelp recommendation system aims to provide
personalized recommendations to users, based on their past
activities and reviews on the application. We considered
two situation, recommendation for existing users and new
users, to illustrate how this works.

Figure 12. User Selection: Restaurant Details

6.1 Existing Users

Based on the user’s past reviews, a restaurant ’Partage’ has
been chosen with its details as shown in Figure 12. The
recommendation system takes this input and returns the top
results as shown in Figure 13. During the process of the
modelling, the data-set used for training was backdated and
at the point of time, the user has yet to visit the following
recommended restaurants (thus ignore ”User Rating” Col-
umn for now). Subsequently, the user visited two of the
following recommended restaurant and left a 5-star ratings,
as shown in the ”User Rating” column. As such, it is a testa-
ment that the proposed system would be able to recommend
restaurants that are desirable by the user.

6.2 New Users

Nonetheless, as for every data science problem, there is
always an issue of cold start and the model is unable to draw

9

Metrics General 30 60 90

Satisfaction 4.895 4.196 4.328 4.233
Number of Actual Visit 38 150 174 146

Diversity 0.00033 0.000136 0.000154 0.000166
Personalization 0.244 0.016 0.024 0.031

Coverage 0.008 0.574 0.419 0.341

Table 9. Multi-metrics for Different Size of Candidates Pool

Figure 13. Recommendation System Results

any information from the user. In this case, new users would
be problematic to the system as there is a lack of data. For
such scenarios, the team has experimented on leveraging
new user’s friends/follows to predict recommendation, rid-
ing on the assumption that both parties would have similar
taste and preferences. As the new users gradually built up
their footprint in Yelp, the team believes that the proposed
recommendation system would be able to serve them well.

7 Conclusion
In this project, we proposed a review quality based rec-
ommendation system for Yelp to bring business benefits
and commercial usefulness to both Yelp and its users. We
firstly used machine learning algorithms to predict the qual-
ity of a newly posed review and help Yelp prioritise high-
quality reviews when presenting reviews to users. Among
the algorithms we employed, XGBoost with top 20 features
outperformed the others. Then, we built a personalized
recommendation system by deploying those high-quality
reviews and user metadata.

To address limitations we encountered during the whole
process, we plan to explore and include more features, like
images uploaded with the reviews for the classification of
review quality, since review content itself does not play
an important role in determining the quality of the review.
As for the recommendation system, we plan to balance
the number of recommended restaurants in each category
for diversity in final recommendation list, to consider fine-
grained opinions about specific aspects of a restaurant to
capture users’ focus on various features(Chen et al., 2015),
and to advice Yelp to include initial profiling (i.e., what do

you like?) during sign-up to get to know users better for
cold start problems.

References
Li Chen, Guanliang Chen, and Feng Wang. 2015. Recom-

mender systems based on user reviews: the state of the
art. User Modeling and User-Adapted Interaction 25, 2
(2015), 99–154.

Sandra Garcia Esparza, Michael P O’Mahony, and Barry
Smyth. 2011. A multi-criteria evaluation of a user gen-
erated content based recommender system. In Presented
at the 3rd Workshop on Recommender Systems and the
Social Web (RSWEB-11), 5th ACM Conference on Rec-
ommender Systems, Chicago, IL, USA, 23-27 October
2011.

Štefan Pero and Tomáš Horváth. 2013. Opinion-driven ma-
trix factorization for rating prediction. In International
Conference on User Modeling, Adaptation, and Personal-
ization. Springer, 1–13.

Sindhu Raghavan, Suriya Gunasekar, and Joydeep Ghosh.
2012. Review quality aware collaborative filtering. In Pro-
ceedings of the sixth ACM conference on Recommender
systems. 123–130.

10

