

Shoot the Long Waiting Pain — Recommendation Pipeline for Stack Overflow

Chen Yiqiu, Gao Jin, Li Xinlin, Qu Mingyu, Tan Sijie1

https://github.com/Benjaminlxl/BT5153-Recommendation-System-for-Stack-Overflow

1. Introduction

Which Q&A website is programmers’ top preference when

they seek help? Most of the programmers would answer:

“stack overflow!” Stack Overflow (SO), under the network

of Stack Exchange, has 14 million users and 11 million

visits per day. There are 21 million questions posted and

31 million answers so far. Among the answers received, the

users can select the one he or she thinks most constructive

to be accepted. By asking good questions and providing

useful answers, the users can earn reputation points and

receive badges for their contribution.

As one is posting his or her question, he or she may wonder

how long it might take to get a solid answer? In the project,

we wish to predict the waiting time to receive a solid

answer2 by identifying potential influential features. By

digging into the post content, we also wish to launch a

recommendation system that provides the most relevant

posts to one certain question posted to improve user

experience by shortening their waiting time.

Figure 1. Flow chart of the whole report

2. Related Works

As the popularity of Q&A forums rises, lots of researchers

have studied problems related to our tasks. In the paper

1 Chen Yiqiu (A0218914B), Gao Jin (A0218905B), Li Xinlin (A0150639A), Qu Mingyu (A0218907X), Tan Sijie (A0162550M)

2 We take the answer accepted by the question owner (i.e., accepted answer) as solid answer in the project.

‘Exploiting User Feedback to Learn to Rank Answers in

Q&A Forums’ (Daniel et al., 2013), author Daniel Hasan

Dalip proposed a learning-to-rank approach for ranking

answers in Q&A forums. He and his fellow researchers

found out that review and user features are the most

important features in the Q&A forums, and text features

are useful for assessing the quality of new answers. This

paper provides us insights for feature engineering.

Regarding the second task, community-based question-to-

question similarity and question retrieval has been studied

for a long time. In the early stage, Xue applied a translation

model to detect duplicate questions. (Xue et al., 2008). The

recent work includes tree kernel with neural networks

(Romeo et al., 2016) and encoder-decoder architectures

with shallow lexical matching and mismatching (Zhang

and Wu 2018.)

In this paper, we attempt to implement several multiple

traditional classification models and Neural Networks to

predict the waiting time of getting an accepted answer.

Followed by further exploring the content of questions, we

attempt to propose the recommendation model to capture

the semantic similarity which can help us to find the most

relevant historical posts to one certain question posted by

users.

3. Data Collection

3.1 Data Source

Stack Overflow provides an open Database API and allows

all users to extract the data by customizing the SQL query

based on their own requests. We explored the Entity-

Relationship Diagram (ERD) and identified three key

https://github.com/Benjaminlxl/BT5153-Recommendation-System-for-Stack-Overflow
https://data.stackexchange.com/stackoverflow/queries

tables which are relevant for our analytic purpose as shown

in Figure 1 below.

• Question table consists of information of question

posts like titles with the corresponding accepted

answer ID which is the key to link to Answer table.

• User table consists of the information of the question

owner like reputation etc.

• Answer table consists of the details of the answer for

the questions which ID is ParentId.

Figure 2. Stack Overflow databases

We have extracted a raw dataset from the Stack Exchange

Data Explorer, a tool for executing arbitrary SQL queries

against data from Stack Overflow Database, using the

custom query. This raw dataset consists of total 190234

questions which are relevant to Python and Data Science

(post tags contain “python” “numpy” “scikit-learn” etc.)

with the accepted answers in the past 2 years covered from

Jan 2019 to Jan 2021.

3.2 Variable Description

The table below summarizes all the variables extracted

from User table, Question table, and Answer table. As

shown in the table, we extracted 14 major variables in total.

Variable Description Data

Type

Id
The unique identifier

for each post
Int

Title Title of the question String

QuestionBody
Content of the

question
String

AnswerBody
Content of the answer

to the question
String

QuestionTime
The time when the

post is created
Datetime

AnswerTime

The time when the

accepted answer is

created

Datetime

AnswerTimeDiff
Time needed to get the

accepted answer
Int

Tags

Words or Phrases that

describe the topic of

the question

String

UserId
The unique identifier

for each user
Int

UserReputation

A rough measurement

of how much the

community trusts the

user

Int

UserPageViews
Number of times the

profile is viewed
Int

UserUpvotes
How many upvotes

the user has cast
Int

UserDownvotes
How many downvotes

the user has cast
Int

BadgeNum

How many

‘Question’-related

badges the user

achieves

Int

Note: AnswerTimeDiff is defined as the time difference between

QuestionTime and AnswerTime and created by ourselves in the

custom query.

Table 1. Variable description

3.3 Exploratory Data Analysis

Exploratory data analysis was conducted to gain some

insights into our target variable and the feature Tag, which

may affect how long the question would get a response.

How We Bin the Target Variable

We observe that there are around 7k+ questions related to

Python and Data Science that could be answered each

month, and many of the users can get their accepted answer

within 30 mins. However, we also observe that there are

still quite some questions needed to wait for quite a long

time to get their accepted answer, which might negatively

affect the user’s experience on Stack Overflow. The

potential reasons could be that the question is hardly

understandable, or the tags the user chose are a relatively

new topic so others could not address the questions

immediately, etc.

The median waiting time of the data is 26 minutes. Take

the user habit and experience factors into consideration,

30-minute was determined as the borderline of the class, so

we decided to divide the time ranges into 2 categories.

Dive into Tag-related Features

In our scraped datasets, for each row there is a Tag

column containing all the tags for that 1 question. We

think tags generanlly represent question topics so it might

be useful to predict the waiting time range. We use

Regular Expression to separate the tags, count the

https://meta.stackexchange.com/questions/2677/database-schema-documentation-for-the-public-data-dump-and-sede
https://data.stackexchange.com/stackoverflow/query/edit/1373717

frequency of all tags in the whole dataset. There are

10596 tags in total. The figure shows the top 10 tag

counts, which are popular Python-related topics in each of

our daily life’s study and coding.

Figure 3. Top 10 tag counts

On the other hand, some tags just appear fewer than 10

times in our nearly 200K questions dataset: “django-

oauth”, “ibm-cloud-functions", “receiver” etc. These tags

are not frequently discuessed by coders before, therefore

not subscribed by lots of users, so these questions may

need longer time to be answered.

Then we also want to know whether questions under

certain tags are answered faster. The pie charts show 2

cases for illustration. “Pandas” questions are mostly

answered within 30 mins (blue), however “TensorFlow”

& “Amazon Web Services” (AWS not in the pie chart)

questions are mostly above 30 mins (orange). It indicates

that if a question has some tags which are related to

difficult topic, even if the tag is a top 10 frequent tag like

TensorFlow, then users might still need to wait for a long

time to receive satisfied answers.

Figure 4. Pandas & Tensorflow time range

4. Data Processing & Feature Engineering

4.1 Text Pre-processing

Prior to the model implementation, text cleaning needs to

be conducted and is divided into the following steps: (1)

remove all HTML tags (e.g., <p></p>); (2) remove

punctuations; (3) change remaining words into lowercases

(4) remove stop words (Python NLTK package); (5) join

words back to sentences. As the result, we cleaned original

texts into 3 new columns “clean_title”, “clean_question”

and “clean_answer”.

4.2 Feature Engineering

Feature engineering involves leveraging data mining

techniques to extract new features from raw data along

with the use of domain knowledge (online Q&A forum

here). It is useful to improve the performance of machine

learning algorithms and is often considered applied

machine learning.

Self-defined Features

In this section, features that may influence the waiting time

of getting an accepted answer are generated from raw data.

Variable Description

Code-Related

code_include Whether contain code or not

question_code_len Code Lenth

question_code_num Number of code segments

Tag-Related

tag_numbers Number of tags

tag_score
Average Frequency of the

tags used

tag_class0_numbers
Number of tags fallen in

class 0

tag_class1_numbers

tags

Number of tags fallen in

class 1

100 dummy columns for top

100 tags

Text-Related

title_char_length Title length

question_char_length Question body length

title_word_counts Number of words in the title

question_word_counts
Number of words in the

question body

title_in_question_format

weekday

Whether the title is in

question format

Dummy: whether weekdays

Table 2. Self-defined features

Here are explanations of some variables in the table:

• Code-Related:
code_include is a dummy variable. Some Stack

Overflow questions have chunks of raw codes (e.g.,

<code></code>). It is not regarded as the length of

texts, since codes have fewer textual meanings than

regular English sentences; but if a user posts some

codes, it can facilitate others to better answer the

questions. We also calculated the length of characters

& the length of words of these codes.

• Tag-Related:
tag_score: in the previous EDA part, we have

calculated the frequencies of all 10K tags. Since a

user usually adds several tags to one question, we

want to calculate a sufficient statistic to represent the

overall frequency. Therefore, the average frequency

is calculated as summing up all of them, then dividing

it by the number of tags.
tag_class0 or 1_numbers: If a question contains

several tags which usually take >= 30mins, then this

particular question is more likely to be >= 30mins. we

count the number of tags that falling in a class-

specific tag set, which is a set of tags that captures the

topic characteristic of posts with the different waiting

time. There are two class-specific tag sets: class 0 tag

set (waiting time < 30 mins) and class 1 tag set (>=

30 mins). The tag set is the union of frequency tag set

and unique tag set. The frequency tag set is a top-100-

frequent-tag list for < 30 mins and >= 30 mins

respectively. (5 common tags like “python” “numpy”

are removed since their frequencies are too high) The

unique tag set is a tag list that removes their

intersection containing common tags.

• Text-Related:

title_word_counts etc.: The text length varies a lot

among different questions. So we built related

features to count the number of words.

title_in_question_format: If a person posts his/her

questions in a interrogative sentence, we think that it

might catch more attention. We built this feature to

indentify whether those titles start with “how” “what”

“why”.

weekday: In our initial analysis we found that there

are more questions posted on weekdays, so there

might be different patterns on weekdays & weekends.

Word Embedding

In this section, we transform the user input questions

(‘clean_question’) to numerical vectors by 3 methods.

The words will be represented as an N-dimensional

vector.

• TF-IDF

TF-IDF stands for Term Frequency – Inverse Document

Frequency. It is one of the most important techniques

used for information retrieval to represent how important

a specific word or phrase is to a given document. The TF-

IDF value increases in proportion to the number of times

a word appears in the document but is often offset by the

frequency of the word in the corpus, which helps to adjust

concerning the fact that some words appear more

frequently in general.

• Bag-of-words (BOW)

BOW can be done by assigning each word a unique

number. Then any document we see can be encoded as a

fixed-length vector with the length of the vocabulary of

known words. The value in each position in the vector

could be filled with a count or frequency of each word in

the encoded document.

• Word2Vec

Word2Vec is one of the most popular representations of

document vocabulary using a shallow neural network. It

is capable of capturing the context of a word in a

document, semantic and syntactic similarity, relation with

other words.

5. Modelling

5.1 Waiting Time Prediction

Waiting time is an important factor affecting user

experience on the website. In this section, the main

objective is to apply classification models to predict

whether the users could get the satisfied answers within

30 mins based on their question input with other features.

5.1.1 Representation Learning

In machine learning, representation learning is a set of

techniques that allows a system to automatically discover

the representations needed for feature detection or

classification from raw data.

From the section feature engineering, all the features were

selected can be summarized as 3 types of features as

below (more details are shown in Table 3).

• Text Embedding

The result of the matrix that transformed from user

question text input by using TF-IDF, BOW and

Word2Vec.

• Profile Features

The initial features that were retrieved from the database

that describe the user profile like reputation, number of

badges earned, etc.

• Extracted Features

All the features that were created in the section of feature

engineering section like the length of the user question

input, number of tags and whether the question time is on

weekdays, etc.

Based on these 3 types of features, overall Representation

Learning strategy process can be described in 5 steps:

1. In the beginning, we only use Profile Features which is

from the raw data to train the model by using Logistic

Regression and take it as our baseline model.

2. Base on this LR model, add in Extracted Features into

the baseline model to see if the performance has been

improved.

3. Introduced other advanced models like

XGBoost/LightGBM and apply on both Profile Features

and Extracted Features to compare the prediction

performance.

4. Add in Text Embedding Features by using TF-IDF and

BOW to apply on Bayes and LightGBM models, and

check if the prediction performance has been improved.

5. Add in Text Embedding Features by using Word2Vec

to apply on LightGBM and Neural Network models, and

check if the prediction performance has been improved.

5.1.2 Model Development

As mentioned, since the object is to predict if the waiting

time is beyond 30 mins, it is a binary classification.

Various classic machine learning models were applied in

this case. Following classifiers were trained and tuned

with their respective parameters in this project:

• Naive Bayes

Naive Bayes model is easy to build and useful for large

datasets. Along with simplicity, Naive Bayes is known to

outperform even highly sophisticated classification

methods. Hence it is mostly used in text classification.

• Logistic Regression

Logistic regression is a classic machine learning

algorithm that utilizes a sigmoid function and works best

on binary classification problems, in this project we use

this model to build up as a baseline model.

• XGBoost

XGBoost is an optimized Gradient Boosting algorithm

through parallel processing, tree-pruning, handling

missing values and regularization to avoid

overfitting/bias. It’s suitable for categorical-intensive data

with ideal generalization ability.

• LightGBM

LightGBM uses histogram-based algorithms, which

bucket continuous feature (attribute) values into discrete

bins. This speeds up training and reduces memory usage.

It is capable of performing equally well with large

datasets with a significant reduction in training time as

compared to XGBoost.

• Neural Network

In the past few years, deep learning models have

significantly expanded the capability of the natural

language processing, and nearly all the model is based on

the representation learning method. Neural networks are

suitable models with nonlinear data with a large number

of inputs, which makes them a compatible solution for

natural language processing. It also could capture the

Type of Features Variable

Text Embedding 'clean_question'

Profile Features 'UserReputation'

 'UserPageViews'

 UserUpVote'

 'UserDownVotes'

'BadgeNum'

Extracted Features

'code_include'

 Top 100 Tags Dummies Columns

 'Tilte_in_question_format'

 'Weekday'

 'Tag_class0_numbers'

 'Tag_class1_numbers'

 'Title_word_counts'

 'Question_word_counts'

 'tag_numbers'

 'Tag_Score'

 'Question_code_num'

 'Question_code_len'

Table 3. Variables input to models

massive interactions between heterogeneous types of

features.

5.1.3 Experiment

Multiple rounds of experiments for various combinations

of models with different types of features summarized in

Representation Learning were conducted. In this case, we

take f1 score as our main metric to measure the prediction

performance for all the models.

The prediction performance on the test dataset result (f1

score) is shown in the table below. From the results, we

can find that the LightGBM with Text Embedding

methods achieved the best performance (0.71) among all

of the 6 models which is quite ideal in real business.

Model
Naive

Bayes

Logistic

Regression

Random

Forest
XGBoost LightGBM

Neural

Network

Profile

Only
0.38 0.36 0.56 0.49 0.51 -

Profile +

Extracted
0.61 0.69 0.69 0.70 0.70 -

TF - IDF 0.60 0.62 0.69 0.69 0.71 -

BOW 0.60 0.62 0.70 0.69 0.71 -

Word2Vec 0.64 0.69 0.69 0.70 0.70 0.66

Table 4. Model comparisons on F1 score

5.1.4 Machine Learning Interpretability

Feature Importance

Feature importance generated by the model (Figure

5)indicated the count-based importance (numbers of splits

are counted), in which Quenstion_Char_Length ranks

first and then followed by Tag_Score and

UserReputation.

Figure 5. Feature importance

Permutation feature importance measures the importance

of a feature by calculating the increase in the model's

prediction error after permuting the feature. A feature is

important if shuffling its values increases the model error,

because in this case the model relied on the feature for the

prediction.

Figure 6. Permutation feature importance

The most important feature based on permutation is

tag_class1_numbers. It is reasonable as according to

Figure 7 below, the respective tag sets for two waiting

time classes are quite different.

Figure 7. Word cloud of frequent tags for 2 classes

Partial Dependence Plot

We use partial dependence plots (PDP) to show the

marginal effect of the important features have on the

predicted outcome of LightGBM. The marginal effect of

“number of tags in class1” on the probability of getting

satisfied answers exceeding 30mins shows a generally

increasing trend as the number of class1 tags increases.

That is, if the question has more tags in class 1, it is more

likely to get a satisfactory answer for more than 30min.

Other PDP are listed in Appendix.

Figure 8. Partial dependence plot for

tag_class1_numbers

LIME

In addition to global importance, we use LIME to

interpret the local importance of the features and show

how they influence the expected answer time.

Case 1: 0 percentile of exceeding 30min

In this case, the probability of getting an accepted answer

within 30 minutes is 0.99. Having more easy-to-be-

answered tags and less complex tags, like apache-spark

and scipy, will decrease the expected time of getting a

satisfied answer.

Figure 9. LIME - 0 percentile

Case 2: 99 percentiles of exceeding 30min

In this case, the probability of getting an accepted answer

within 30 minutes is 0.04. It’s caused by a too lengthy

question and related to difficult topics including PyTorch

and TensorFlow.

Figure 10. LIME - 99 percentile

5.2 Recommendation System Building

If the previous prediction model shows that a user will wait

a quite long time which is beyond 30 mins for the accepted

answer, we could take proactive actions to recommend

historical similar questions with the answers to users for

reference.

The core idea in task here is to detect semantic similarity

in questions posted in the forum. If a similar question is

posted by a user, the system can identify the related

question and then promote these solved questions with an

accepted answer to the user.

5.2.1 Methodology

Figure 11. Steps for Recommendationn System

The main idea of the recommendation system is to use title

and tag to filter based on cosine similarity at first, then

recommend the questions with the highest cosine similarity

with the input question.

(1) Text Cleansing

Given an input question and history question, similar to the

cleansing in the previous part of the report, we firstly clean

the title and question body by removing stopwords, HTML

part, digits, punctuation, transforming all words to

lowercase and finally lemmatization. For tags of input

questions and history questions, we extract the words from

the tags.

(2) Filter based on SimTitle and SimTag

(2.1) Calculation of similarity score between title:

In this step, we fit a TF-IDF vectorizer using cleaned title

data from history questions. After we have the fitted

vectorizer, we transform the title of history questions and

the input title into a dense matrix. Finally, we calculate the

cosine similarity between the input title and each title from

the raw dataset to get a similarity score for the title as

SimTitle.

(2.2) Calculation of similarity score between tag:

Similarly, we have a TF-IDF vectorizer fitted on the tags

for each question in the raw dataset. Then we apply the

transform function on the input and all the tags in the raw

dataset. After we get the dense TF-IDF matrix, we then get

the cosine similarity score between each row of tags in the

dataset and the input as SimTag.

(2.3) Filter by combinations of title and tags

Based on the similarity score of both title and tags, we then

calculate a similarity score with the formula below:

SimScore(Ip,

Hp)=α∗SimTitle(Ip,Hp)+(1−α)∗SimTag(Ip,Hp)

Ip states input Question, Hp states History question in the

dataset.

In this project, we set α to be 0.9 which means that we put

more emphasis on the title similarity and the filter

threshold score to be 0.2. If SimScore is more than 0.2, we

then add the ID of the questions to the candidate for final

recommendation.

(3) Recommendation based on Question Body Similarity

Score

After we get filtered data, we then proceed to the final step

of the recommendation system. Like the first 2 steps, we

have a TF-IDF vectorizer fitted on the cleaned Question

Body of history questions in the raw data set and transform

the cleaned input question body and clean question body in

the dataset into a dense matrix. Then we calculate the

cosine similarity scores between the input question body

and each clean question body of the history question.

Finally, we rank the history questions by cosine similarity

and output top 5 questions with the highest cosine

similarity with the input question.

5.2.2 Results

After we implement the recommendation system, we tried

a sample question from the raw dataset and checked what

our recommendation system will output. The input

question can be found at

https://stackoverflow.com/questions/53992768, and the

screenshot of the input question is in the appendix. We

decide to recommend questions, and their website and

cosine similarity is shown below:

Output Question
Cosine

Similarity
https://stackoverflow.com/questions/59559519/

how-to-drop-duplicates-in-dataframe-ignoring-

punctuations
0.555

https://stackoverflow.com/questions/54066612/

boolean-subset-with-named-index
0.546

https://stackoverflow.com/questions/59641251/

drop-rows-if-any-of-multiple-columns-have-

duplicates-rows-in-pandas
0.543

https://stackoverflow.com/questions/61289172/

pandas-drop-subset-of-dataframe
0.542

https://stackoverflow.com/questions/58134427/

can-i-use-pd-drop-in-method-chaining-to-drop-

specific-rows
0.542

Table 5. Recommendation of 5 similar questions

We can see that the input question asks about ‘the

difference between the function duplicated() and the

function drop_duplicates()’. The top three recommended

questions are related to drop_duplicated and the last 2

questions are related to droping specific rows. While the

recommended questions do not have the exactly same

meaning as the input question, their contents are similar to

https://stackoverflow.com/questions/53992768
https://stackoverflow.com/questions/59559519/how-to-drop-duplicates-in-dataframe-ignoring-punctuations
https://stackoverflow.com/questions/59559519/how-to-drop-duplicates-in-dataframe-ignoring-punctuations
https://stackoverflow.com/questions/59559519/how-to-drop-duplicates-in-dataframe-ignoring-punctuations
https://stackoverflow.com/questions/54066612/boolean-subset-with-named-index
https://stackoverflow.com/questions/54066612/boolean-subset-with-named-index
https://stackoverflow.com/questions/59641251/drop-rows-if-any-of-multiple-columns-have-duplicates-rows-in-pandas
https://stackoverflow.com/questions/59641251/drop-rows-if-any-of-multiple-columns-have-duplicates-rows-in-pandas
https://stackoverflow.com/questions/59641251/drop-rows-if-any-of-multiple-columns-have-duplicates-rows-in-pandas
https://stackoverflow.com/questions/61289172/pandas-drop-subset-of-dataframe
https://stackoverflow.com/questions/61289172/pandas-drop-subset-of-dataframe
https://stackoverflow.com/questions/58134427/can-i-use-pd-drop-in-method-chaining-to-drop-specific-rows
https://stackoverflow.com/questions/58134427/can-i-use-pd-drop-in-method-chaining-to-drop-specific-rows
https://stackoverflow.com/questions/58134427/can-i-use-pd-drop-in-method-chaining-to-drop-specific-rows

the input question and their answers could be helpful to

solve the input questions.

6. Business Insights

• Encourage users to answer questions related to long-

waiting tags related to deep learning: We noticed that

tag-related features play quite important roles in

predicting long-waiting questions, and most long-

waiting time tags are related to deep learning. To

encourage users to answer questions under tags like

Spark and TensorFlow by giving them badges and

rewards would potentially decrease the average

waiting time.

• Long question body and the existence of code chunks

would imply higher waiting time even though

questions have popular tags like pandas: As shown

the case in the LIME analysis, we noticed that when

the question body is super long, even though questions

are under short-waiting time tags like pandas, the

effect of length of question body is strong enough to

classify the questions into long-waiting class.

• The average frequency of tags matters rather than

the number of tags: We noticed that the average

frequency of tags (which is Tag_Score) shows a higher

feature importance rank in predicting than the number

of tags a question related does. It means that business

people at StackOverflow should manage and monitor

tags in an individual way if they want to improve user

experience in terms of receiving answers.

• Questions that post by users with high reputations

should be focused on: We noticed that the user

reputation of who posts questions ranked high in

feature importance. The higher the reputation, the

longer time the answer would be accepted. It is

possibly due to that highly reputed users tend to post

hard or deep questions in a certain field. We should

focus more on these cases, not only because of their

long waiting time but also due to the potentially high

value of these questions.

• A Three-filtering-step recommendation system is

recommended: Based on insights and focuses

mentioned above, we recommend business people try

the three-filtering-steps recommendation system we

built. The filtering hierarchically (Tag - Title -

Question body) is tailored to the characteristics of

Q&A platform Stack Overflow.

7. Limitation & Future Improvement

• Further feature engineering related to tag

subscribers required: Based on results from previous

related research papers, we found features that capture

user activation tend to have higher prediction power.

To improve our model performance, we may extract

data related to active subscribers in each tag and create

certain metrics as input features.

• Provide a better evaluation metric for the

recommendation system: We did not implement

metrics to evaluate the performance of our

recommendation system because we do not have the

computation power to collect enough recommendation

samples. It can be done by inputting a sample of

questions and getting recommendation questions for

each sample question, and then identifying whether

recommended questions are related to the input

questions by humans and finally calculating recall and

precision to evaluate performance.

• Try multiple distance measures in the calculation of

similarity for the recommendation system: Different

distance measures such as Euclidean distance, Jaccard

distance, or self-defined distance could be tried to

quantify the similarity.

8. Conclusion

In this study, we explored potential features that may

affect the waiting time of accepted answers for one post

and built the waiting time prediction model. We showed

that the waiting time prediction can be handled as a binary

classification task. Based on actual data extracted from

the Stack Overflow database, we found tag-related and

text-related features play important roles in predictive

power in the optimal model LightGBM with word

vectorization. We also conducted machine learning

interpretability analysis to have a deep dive into how

features affect prediction outcomes in both the global and

local settings.

Based on the outcome of prediction models, we then

proposed the recommendation model, which basic idea is

built on cosine similarity of input text, to recommend

similar posts to those questions that are predicted to have

longer than 30mins waiting time. In the whole project we

built an integrated pipeline from data extraction to time

prediction, then to post recommendations, which is of real

business value for managing user posting experience on

Q&A platform like Stack Overflow.

References

"What is reputation? How do I earn (and lose) it?". Stack

Overflow. Archived from the original on 9 June 2013.

Retrieved 14 August 2010.

Daniel Hasan Dalip, Marcos André Gonçalves, Marco

Cristo, and Pavel Calado. 2013. Exploiting user feedback

to learn to rank answers in q&a forums: a case study with

stack overflow. In Proceedings of the 36th international

ACM SIGIR conference on Research and development in

information retrieval (SIGIR '13). Association for

Computing Machinery, New York, NY, USA, 543–552.

DOI:https://doi.org/10.1145/2484028.2484072

Xiaobing Xue, Jiwoon Jeon, and W. Bruce Croft. 2008.

Retrieval models for question and answer archives. In

Proceedings of the 31st Annual International ACM SIGIR

Conference on Research and Development in Information

Retrieval (SIGIR 2008), pages 475–482.

Salvatore Romeo, Giovanni Da San Martino, Alberto

Barron-Cede ´ no, Alessandro Moschitti, Yonatan Be- ˜

linkov, Wei-Ning Hsu, Yu Zhang, Mitra Mohtarami, and

James Glass. 2016. Neural attention for learning to rank

questions in community question answering. In

Proceedings of the 26th International Conference on

Computational Linguistics (COLING 2016), pages 1734–

1745.

Minghua Zhang and Yunfang Wu. 2018. An unsupervised

model with attention autoencoders for question retrieval.

In Proceedings of the 32nd AAAI Conference on Artificial

Intelligence (AAAI 2018), pages 4978–4986.

Jie Wan, FengYu Zhao, Ya Liu. 2019. Feature

Integration Answer Recommendation Strategy For Stack

Overflow System.

Appendix

Cont’d for 5.1.4 Machine Leaning Interpretability:

Figure 12. PDP - “Question_Char_Length”

Figure 13. PDP - “Tag_Class0_Numbers”

Figure 14. PDP - “Tag_Score”

Figure 15. PDP - “UserReputation”

https://stackoverflow.com/help/whats-reputation
https://web.archive.org/web/20130609062938/http:/stackoverflow.com/help/whats-reputation

Figure 16. PDP - “Pandas”

Cont’d for 5.2 Recommendation System Building - Case

for Evaluation

Input Question:

Figure 17. Example – Question Asked

Recommended Questions:

Figure 18. Example - The 5 similar questions

	Shoot the Long Waiting Pain — Recommendation Pipeline for Stack Overflow
	Chen Yiqiu, Gao Jin, Li Xinlin, Qu Mingyu, Tan Sijie
	https://github.com/Benjaminlxl/BT5153-Recommendation-System-for-Stack-Overflow

