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1. Introduction 

Which Q&A website is programmers’ top preference when 

they seek help?  Most of the programmers would answer: 

“stack overflow!” Stack Overflow (SO), under the network 

of Stack Exchange, has 14 million users and 11 million 

visits per day. There are 21 million questions posted and 

31 million answers so far. Among the answers received, the 

users can select the one he or she thinks most constructive 

to be accepted. By asking good questions and providing 

useful answers, the users can earn reputation points and 

receive badges for their contribution.  

As one is posting his or her question, he or she may wonder 

how long it might take to get a solid answer? In the project, 

we wish to predict the waiting time to receive a solid 

answer2 by identifying potential influential features. By 

digging into the post content, we also wish to launch a 

recommendation system that provides the most relevant 

posts to one certain question posted to improve user 

experience by shortening their waiting time.  

 

Figure 1. Flow chart of the whole report 

 

2.  Related Works 

As the popularity of Q&A forums rises, lots of researchers 

have studied problems related to our tasks. In the paper 

 
1 Chen Yiqiu (A0218914B), Gao Jin (A0218905B), Li Xinlin (A0150639A), Qu Mingyu (A0218907X), Tan Sijie (A0162550M) 

2 We take the answer accepted by the question owner (i.e., accepted answer) as solid answer in the project. 

‘Exploiting User Feedback to Learn to Rank Answers in 

Q&A Forums’ (Daniel et al., 2013), author Daniel Hasan 

Dalip proposed a learning-to-rank approach for ranking 

answers in Q&A forums. He and his fellow researchers 

found out that review and user features are the most 

important features in the Q&A forums, and text features 

are useful for assessing the quality of new answers. This 

paper provides us insights for feature engineering. 

Regarding the second task, community-based question-to-

question similarity and question retrieval has been studied 

for a long time. In the early stage, Xue applied a translation 

model to detect duplicate questions. (Xue et al., 2008). The 

recent work includes tree kernel with neural networks 

(Romeo et al., 2016) and encoder-decoder architectures 

with shallow lexical matching and mismatching (Zhang 

and Wu 2018.)  

In this paper, we attempt to implement several multiple 

traditional classification models and Neural Networks to 

predict the waiting time of getting an accepted answer. 

Followed by further exploring the content of questions, we 

attempt to propose the recommendation model to capture 

the semantic similarity which can help us to find the most 

relevant historical posts to one certain question posted by 

users.  

 

3.  Data Collection 

3.1 Data Source 

Stack Overflow provides an open Database API and allows 

all users to extract the data by customizing the SQL query 

based on their own requests. We explored the Entity-

Relationship Diagram (ERD) and identified three key 

https://github.com/Benjaminlxl/BT5153-Recommendation-System-for-Stack-Overflow
https://data.stackexchange.com/stackoverflow/queries


 

 

tables which are relevant for our analytic purpose as shown 

in Figure 1 below.  

• Question table consists of information of question 

posts like titles with the corresponding accepted 

answer ID which is the key to link to Answer table.   

• User table consists of the information of the question 

owner like reputation etc. 

• Answer table consists of the details of the answer for 

the questions which ID is ParentId. 

 

Figure 2. Stack Overflow databases 

We have extracted a raw dataset from the Stack Exchange 

Data Explorer, a tool for executing arbitrary SQL queries 

against data from Stack Overflow Database, using the 

custom query. This raw dataset consists of total 190234 

questions which are relevant to Python and Data Science 

(post tags contain “python” “numpy” “scikit-learn” etc.) 

with the accepted answers in the past 2 years covered from 

Jan 2019 to Jan 2021.  

3.2 Variable Description 

The table below summarizes all the variables extracted 

from User table, Question table, and Answer table. As 

shown in the table, we extracted 14 major variables in total. 

Variable Description Data 

Type 

Id 
The unique identifier 

for each post 
Int 

Title Title of the question String 

QuestionBody 
Content of the 

question 
String 

AnswerBody 
Content of the answer 

to the question 
String 

QuestionTime 
The time when the 

post is created 
Datetime 

AnswerTime 

The time when the 

accepted answer is 

created 

Datetime 

AnswerTimeDiff 
Time needed to get the 

accepted answer 
Int 

Tags 

Words or Phrases that 

describe the topic of 

the question 

String 

UserId 
The unique identifier 

for each user 
Int 

UserReputation 

A rough measurement 

of how much the 

community trusts the 

user 

Int 

UserPageViews 
Number of times the 

profile is viewed 
Int 

UserUpvotes 
How many upvotes 

the user has cast 
Int 

UserDownvotes 
How many downvotes 

the user has cast 
Int 

BadgeNum 

How many 

‘Question’-related 

badges the user 

achieves 

Int 

Note: AnswerTimeDiff is defined as the time difference between 

QuestionTime and AnswerTime and created by ourselves in the 

custom query. 

Table 1. Variable description 

3.3 Exploratory Data Analysis   

Exploratory data analysis was conducted to gain some 

insights into our target variable and the feature Tag, which 

may affect how long the question would get a response.  

How We Bin the Target Variable 

We observe that there are around 7k+ questions related to 

Python and Data Science that could be answered each 

month, and many of the users can get their accepted answer 

within 30 mins. However, we also observe that there are 

still quite some questions needed to wait for quite a long 

time to get their accepted answer, which might negatively 

affect the user’s experience on Stack Overflow. The 

potential reasons could be that the question is hardly 

understandable, or the tags the user chose are a relatively 

new topic so others could not address the questions 

immediately, etc.  

The median waiting time of the data is 26 minutes. Take 

the user habit and experience factors into consideration, 

30-minute was determined as the borderline of the class, so 

we decided to divide the time ranges into 2 categories. 

Dive into Tag-related Features 

In our scraped datasets, for each row there is a Tag 

column containing all the tags for that 1 question. We 

think tags generanlly represent question topics so it might 

be useful to predict the waiting time range. We use 

Regular Expression to separate the tags, count the 

https://meta.stackexchange.com/questions/2677/database-schema-documentation-for-the-public-data-dump-and-sede
https://data.stackexchange.com/stackoverflow/query/edit/1373717


 

 

frequency of all tags in the whole dataset. There are 

10596 tags in total. The figure shows the top 10 tag 

counts, which are popular Python-related topics in each of 

our daily life’s study and coding. 

 

Figure 3. Top 10 tag counts 

On the other hand, some tags just appear fewer than 10 

times in our nearly 200K questions dataset: “django-

oauth”, “ibm-cloud-functions", “receiver” etc. These tags 

are not frequently discuessed by coders before, therefore 

not subscribed by lots of users, so these questions may 

need longer time to be answered. 

Then we also want to know whether questions under 

certain tags are answered faster. The pie charts show 2 

cases for illustration. “Pandas” questions are mostly 

answered within 30 mins (blue), however “TensorFlow” 

& “Amazon Web Services” (AWS not in the pie chart) 

questions are mostly above 30 mins (orange). It indicates 

that if a question has some tags which are related to 

difficult topic, even if the tag is a top 10 frequent tag like 

TensorFlow, then users might still need to wait for a long 

time to receive satisfied answers. 

  

Figure 4. Pandas & Tensorflow time range 

 

4. Data Processing & Feature Engineering  

4.1 Text Pre-processing 

Prior to the model implementation, text cleaning needs to 

be conducted and is divided into the following steps: (1) 

remove all HTML tags (e.g., <p></p>); (2) remove 

punctuations; (3) change remaining words into lowercases 

(4) remove stop words (Python NLTK package); (5) join 

words back to sentences. As the result, we cleaned original 

texts into 3 new columns “clean_title”, “clean_question” 

and “clean_answer”.  

4.2 Feature Engineering 

Feature engineering involves leveraging data mining 

techniques to extract new features from raw data along 

with the use of domain knowledge (online Q&A forum 

here). It is useful to improve the performance of machine 

learning algorithms and is often considered applied 

machine learning. 

Self-defined Features 

In this section, features that may influence the waiting time 

of getting an accepted answer are generated from raw data. 

Variable Description 

Code-Related 

 
 

code_include Whether contain code or not 

question_code_len Code Lenth 

question_code_num Number of code segments 

Tag-Related 

 
 

tag_numbers Number of tags 

tag_score 
Average Frequency of the 

tags used 

tag_class0_numbers 
Number of tags fallen in 

class 0 

tag_class1_numbers 

tags 

Number of tags fallen in 

class 1 

100 dummy columns for top 

100 tags 

Text-Related 

 
 

title_char_length Title length 

question_char_length Question body length 

title_word_counts Number of words in the title 

question_word_counts 
Number of words in the 

question body 

title_in_question_format 

weekday 

Whether the title is in 

question format 

Dummy: whether weekdays 

Table 2. Self-defined features 

Here are explanations of some variables in the table: 

• Code-Related:  
code_include is a dummy variable. Some Stack 

Overflow questions have chunks of raw codes (e.g., 

<code></code>). It is not regarded as the length of 



 

 

texts, since codes have fewer textual meanings than 

regular English sentences; but if a user posts some 

codes, it can facilitate others to better answer the 

questions. We also calculated the length of characters 

& the length of words of these codes. 

• Tag-Related:  
tag_score: in the previous EDA part, we have 

calculated the frequencies of all 10K tags. Since a 

user usually adds several tags to one question, we 

want to calculate a sufficient statistic to represent the 

overall frequency. Therefore, the average frequency 

is calculated as summing up all of them, then dividing 

it by the number of tags.  
tag_class0 or 1_numbers: If a question contains 

several tags which usually take >= 30mins, then this 

particular question is more likely to be >= 30mins. we 

count the number of tags that falling in a class-

specific tag set, which is a set of tags that captures the 

topic characteristic of posts with the different waiting 

time. There are two class-specific tag sets: class 0 tag 

set (waiting time < 30 mins) and class 1 tag set (>= 

30 mins). The tag set is the union of frequency tag set 

and unique tag set. The frequency tag set is a top-100-

frequent-tag list for < 30 mins and >= 30 mins 

respectively. (5 common tags like “python” “numpy” 

are removed since their frequencies are too high) The 

unique tag set is a tag list that removes their 

intersection containing common tags. 

• Text-Related:  

title_word_counts etc.: The text length varies a lot 

among different questions. So we built related 

features to count the number of words. 

title_in_question_format: If a person posts his/her 

questions in a interrogative sentence, we think that it 

might catch more attention. We built this feature to 

indentify whether those titles start with “how” “what” 

“why”. 

weekday: In our initial analysis we found that there 

are more questions posted on weekdays, so there 

might be different patterns on weekdays & weekends. 

Word Embedding 

In this section, we transform the user input questions 

(‘clean_question’) to numerical vectors by 3 methods. 

The words will be represented as an N-dimensional 

vector. 

• TF-IDF 

TF-IDF stands for Term Frequency – Inverse Document 

Frequency. It is one of the most important techniques 

used for information retrieval to represent how important 

a specific word or phrase is to a given document. The TF-

IDF value increases in proportion to the number of times 

a word appears in the document but is often offset by the 

frequency of the word in the corpus, which helps to adjust 

concerning the fact that some words appear more 

frequently in general. 

• Bag-of-words (BOW) 

BOW can be done by assigning each word a unique 

number. Then any document we see can be encoded as a 

fixed-length vector with the length of the vocabulary of 

known words. The value in each position in the vector 

could be filled with a count or frequency of each word in 

the encoded document. 

• Word2Vec 

Word2Vec is one of the most popular representations of 

document vocabulary using a shallow neural network. It 

is capable of capturing the context of a word in a 

document, semantic and syntactic similarity, relation with 

other words. 

 

5. Modelling 

5.1 Waiting Time Prediction 

Waiting time is an important factor affecting user 

experience on the website. In this section, the main 

objective is to apply classification models to predict 

whether the users could get the satisfied answers within 

30 mins based on their question input with other features. 

5.1.1 Representation Learning 

In machine learning, representation learning is a set of 

techniques that allows a system to automatically discover 

the representations needed for feature detection or 

classification from raw data.  

From the section feature engineering, all the features were 

selected can be summarized as 3 types of features as 

below (more details are shown in Table 3).  

• Text Embedding 

The result of the matrix that transformed from user 

question text input by using TF-IDF, BOW and 

Word2Vec.  

• Profile Features 



 

 

The initial features that were retrieved from the database 

that describe the user profile like reputation, number of 

badges earned, etc. 

• Extracted Features 

All the features that were created in the section of feature 

engineering section like the length of the user question 

input, number of tags and whether the question time is on 

weekdays, etc. 

Based on these 3 types of features, overall Representation 

Learning strategy process can be described in 5 steps: 

1. In the beginning, we only use Profile Features which is 

from the raw data to train the model by using Logistic 

Regression and take it as our baseline model.  

2. Base on this LR model, add in Extracted Features into 

the baseline model to see if the performance has been 

improved. 

3. Introduced other advanced models like 

XGBoost/LightGBM and apply on both Profile Features 

and Extracted Features to compare the prediction 

performance. 

4. Add in Text Embedding Features by using TF-IDF and 

BOW to apply on Bayes and LightGBM models, and 

check if the prediction performance has been improved. 

5. Add in Text Embedding Features by using Word2Vec 

to apply on LightGBM and Neural Network models, and 

check if the prediction performance has been improved. 

5.1.2 Model Development 

As mentioned, since the object is to predict if the waiting 

time is beyond 30 mins, it is a binary classification. 

Various classic machine learning models were applied in 

this case. Following classifiers were trained and tuned 

with their respective parameters in this project: 

• Naive Bayes 

Naive Bayes model is easy to build and useful for large 

datasets. Along with simplicity, Naive Bayes is known to 

outperform even highly sophisticated classification 

methods. Hence it is mostly used in text classification. 

• Logistic Regression 

Logistic regression is a classic machine learning 

algorithm that utilizes a sigmoid function and works best 

on binary classification problems, in this project we use 

this model to build up as a baseline model. 

• XGBoost 

XGBoost is an optimized Gradient Boosting algorithm 

through parallel processing, tree-pruning, handling 

missing values and regularization to avoid 

overfitting/bias. It’s suitable for categorical-intensive data 

with ideal generalization ability. 

• LightGBM 

LightGBM uses histogram-based algorithms, which 

bucket continuous feature (attribute) values into discrete 

bins. This speeds up training and reduces memory usage. 

It is capable of performing equally well with large 

datasets with a significant reduction in training time as 

compared to XGBoost. 

• Neural Network 

In the past few years, deep learning models have 

significantly expanded the capability of the natural 

language processing, and nearly all the model is based on 

the representation learning method. Neural networks are 

suitable models with nonlinear data with a large number 

of inputs, which makes them a compatible solution for 

natural language processing. It also could capture the 

Type of Features Variable  

Text Embedding 'clean_question' 

  

Profile Features  'UserReputation' 

 'UserPageViews' 

 UserUpVote' 

 'UserDownVotes' 

 
'BadgeNum' 

 

Extracted Features  

  
'code_include' 

 Top 100 Tags Dummies Columns 

 'Tilte_in_question_format' 

 'Weekday' 

 'Tag_class0_numbers' 

 'Tag_class1_numbers' 

 'Title_word_counts' 

 'Question_word_counts' 

 'tag_numbers' 

 'Tag_Score' 

 'Question_code_num' 

 'Question_code_len' 

Table 3. Variables input to models 



 

 

massive interactions between heterogeneous types of 

features. 

5.1.3 Experiment 

Multiple rounds of experiments for various combinations 

of models with different types of features summarized in 

Representation Learning were conducted. In this case, we 

take f1 score as our main metric to measure the prediction 

performance for all the models. 

The prediction performance on the test dataset result (f1 

score) is shown in the table below. From the results, we 

can find that the LightGBM with Text Embedding 

methods achieved the best performance (0.71) among all 

of the 6 models which is quite ideal in real business. 

 

Model 
Naive 

Bayes 

Logistic 

Regression 

Random 

Forest 
XGBoost LightGBM 

Neural 

Network 

Profile 

Only 
0.38 0.36 0.56 0.49 0.51 - 

Profile + 

Extracted 
0.61 0.69 0.69 0.70 0.70 - 

TF - IDF 0.60 0.62 0.69 0.69 0.71 - 

BOW 0.60 0.62 0.70 0.69 0.71 - 

Word2Vec 0.64 0.69 0.69 0.70 0.70 0.66 

Table 4. Model comparisons on F1 score 

 

5.1.4 Machine Learning Interpretability 

Feature Importance 

Feature importance generated by the model (Figure 

5)indicated the count-based importance (numbers of splits 

are counted), in which Quenstion_Char_Length ranks 

first and then followed by Tag_Score and 

UserReputation. 

 

Figure 5. Feature importance 

Permutation feature importance measures the importance 

of a feature by calculating the increase in the model's 

prediction error after permuting the feature. A feature is 

important if shuffling its values increases the model error, 

because in this case the model relied on the feature for the 

prediction. 

 

Figure 6. Permutation feature importance 

The most important feature based on permutation is 

tag_class1_numbers. It is reasonable as according to 

Figure 7 below, the respective tag sets for two waiting 

time classes are quite different. 



 

 

 

Figure 7. Word cloud of frequent tags for 2 classes 

Partial Dependence Plot 

We use partial dependence plots (PDP) to show the 

marginal effect of the important features have on the 

predicted outcome of LightGBM. The marginal effect of 

“number of tags in class1” on the probability of getting 

satisfied answers exceeding 30mins shows a generally 

increasing trend as the number of class1 tags increases. 

That is, if the question has more tags in class 1, it is more 

likely to get a satisfactory answer for more than 30min. 

Other PDP are listed in Appendix. 

 

Figure 8. Partial dependence plot for 

tag_class1_numbers 

LIME 

In addition to global importance, we use LIME to 

interpret the local importance of the features and show 

how they influence the expected answer time. 

Case 1:  0 percentile of exceeding 30min 

In this case, the probability of getting an accepted answer 

within 30 minutes is 0.99. Having more easy-to-be-

answered tags and less complex tags, like apache-spark 

and scipy, will decrease the expected time of getting a 

satisfied answer. 

 

Figure 9. LIME - 0 percentile 

Case 2: 99 percentiles of exceeding 30min 

In this case, the probability of getting an accepted answer 

within 30 minutes is 0.04. It’s caused by a too lengthy 

question and related to difficult topics including PyTorch 

and TensorFlow. 

 

Figure 10. LIME - 99 percentile 

 

5.2 Recommendation System Building  

If the previous prediction model shows that a user will wait 

a quite long time which is beyond 30 mins for the accepted 

answer, we could take proactive actions to recommend 

historical similar questions with the answers to users for 

reference.    

The core idea in task here is to detect semantic similarity 

in questions posted in the forum. If a similar question is 

posted by a user, the system can identify the related 

question and then promote these solved questions with an 

accepted answer to the user.   

 

 



 

 

5.2.1 Methodology  

 

Figure 11. Steps for Recommendationn System 

The main idea of the recommendation system is to use title 

and tag to filter based on cosine similarity at first, then 

recommend the questions with the highest cosine similarity 

with the input question.  

(1) Text Cleansing 

Given an input question and history question, similar to the 

cleansing in the previous part of the report, we firstly clean 

the title and question body by removing stopwords, HTML 

part, digits, punctuation, transforming all words to 

lowercase and finally lemmatization. For tags of input 

questions and history questions, we extract the words from 

the tags. 

(2) Filter based on SimTitle and SimTag 

(2.1) Calculation of similarity score between title:  

In this step, we fit a TF-IDF vectorizer using cleaned title 

data from history questions. After we have the fitted 

vectorizer, we transform the title of history questions and 

the input title into a dense matrix. Finally, we calculate the 

cosine similarity between the input title and each title from 

the raw dataset to get a similarity score for the title as 

SimTitle.  

(2.2) Calculation of similarity score between tag:  

Similarly, we have a TF-IDF vectorizer fitted on the tags 

for each question in the raw dataset. Then we apply the 

transform function on the input and all the tags in the raw 

dataset. After we get the dense TF-IDF matrix, we then get 

the cosine similarity score between each row of tags in the 

dataset and the input as SimTag.  

(2.3) Filter by combinations of title and tags  

Based on the similarity score of both title and tags, we then 

calculate a similarity score with the formula below:  

SimScore(Ip, 

Hp)=α∗SimTitle(Ip,Hp)+(1−α)∗SimTag(Ip,Hp)  

Ip states input Question, Hp states History question in the 

dataset.  

In this project, we set α to be 0.9 which means that we put 

more emphasis on the title similarity and the filter 

threshold score to be 0.2. If SimScore is more than 0.2, we 

then add the ID of the questions to the candidate for final 

recommendation. 

(3) Recommendation based on Question Body Similarity 

Score  

After we get filtered data, we then proceed to the final step 

of the recommendation system. Like the first 2 steps, we 

have a TF-IDF vectorizer fitted on the cleaned Question 

Body of history questions in the raw data set and transform 

the cleaned input question body and clean question body in 

the dataset into a dense matrix. Then we calculate the 

cosine similarity scores between the input question body 

and each clean question body of the history question. 

Finally, we rank the history questions by cosine similarity 

and output top 5 questions with the highest cosine 

similarity with the input question. 

5.2.2 Results  

After we implement the recommendation system, we tried 

a sample question from the raw dataset and checked what 

our recommendation system will output. The input 

question can be found at 

https://stackoverflow.com/questions/53992768, and the 

screenshot of the input question is in the appendix. We 

decide to recommend questions, and their website and 

cosine similarity is shown below: 

Output Question 
Cosine 

Similarity 
https://stackoverflow.com/questions/59559519/

how-to-drop-duplicates-in-dataframe-ignoring-

punctuations 
0.555 

https://stackoverflow.com/questions/54066612/

boolean-subset-with-named-index 
0.546 

https://stackoverflow.com/questions/59641251/

drop-rows-if-any-of-multiple-columns-have-

duplicates-rows-in-pandas 
0.543 

https://stackoverflow.com/questions/61289172/

pandas-drop-subset-of-dataframe 
0.542 

https://stackoverflow.com/questions/58134427/

can-i-use-pd-drop-in-method-chaining-to-drop-

specific-rows 
0.542 

Table 5. Recommendation of 5 similar questions 

We can see that the input question asks about ‘the 

difference between the function duplicated() and the 

function drop_duplicates()’. The top three recommended 

questions are related to drop_duplicated and the last 2 

questions are related to droping specific rows. While the 

recommended questions do not have the exactly same 

meaning as the input question, their contents are similar to 

https://stackoverflow.com/questions/53992768
https://stackoverflow.com/questions/59559519/how-to-drop-duplicates-in-dataframe-ignoring-punctuations
https://stackoverflow.com/questions/59559519/how-to-drop-duplicates-in-dataframe-ignoring-punctuations
https://stackoverflow.com/questions/59559519/how-to-drop-duplicates-in-dataframe-ignoring-punctuations
https://stackoverflow.com/questions/54066612/boolean-subset-with-named-index
https://stackoverflow.com/questions/54066612/boolean-subset-with-named-index
https://stackoverflow.com/questions/59641251/drop-rows-if-any-of-multiple-columns-have-duplicates-rows-in-pandas
https://stackoverflow.com/questions/59641251/drop-rows-if-any-of-multiple-columns-have-duplicates-rows-in-pandas
https://stackoverflow.com/questions/59641251/drop-rows-if-any-of-multiple-columns-have-duplicates-rows-in-pandas
https://stackoverflow.com/questions/61289172/pandas-drop-subset-of-dataframe
https://stackoverflow.com/questions/61289172/pandas-drop-subset-of-dataframe
https://stackoverflow.com/questions/58134427/can-i-use-pd-drop-in-method-chaining-to-drop-specific-rows
https://stackoverflow.com/questions/58134427/can-i-use-pd-drop-in-method-chaining-to-drop-specific-rows
https://stackoverflow.com/questions/58134427/can-i-use-pd-drop-in-method-chaining-to-drop-specific-rows


 

 

the input question and their answers could be helpful to 

solve the input questions.  

 

6. Business Insights 

• Encourage users to answer questions related to long-

waiting tags related to deep learning:  We noticed that 

tag-related features play quite important roles in 

predicting long-waiting questions, and most long-

waiting time tags are related to deep learning. To 

encourage users to answer questions under tags like 

Spark and TensorFlow by giving them badges and 

rewards would potentially decrease the average 

waiting time. 

• Long question body and the existence of code chunks 

would imply higher waiting time even though 

questions have popular tags like pandas:  As shown 

the case in the LIME analysis, we noticed that when 

the question body is super long, even though questions 

are under short-waiting time tags like pandas, the 

effect of length of question body is strong enough to 

classify the questions into long-waiting class. 

• The average frequency of tags matters rather than 

the number of tags:  We noticed that the average 

frequency of tags (which is Tag_Score) shows a higher 

feature importance rank in predicting than the number 

of tags a question related does. It means that business 

people at StackOverflow should manage and monitor 

tags in an individual way if they want to improve user 

experience in terms of receiving answers. 

• Questions that post by users with high reputations 

should be focused on:  We noticed that the user 

reputation of who posts questions ranked high in 

feature importance. The higher the reputation, the 

longer time the answer would be accepted. It is 

possibly due to that highly reputed users tend to post 

hard or deep questions in a certain field. We should 

focus more on these cases, not only because of their 

long waiting time but also due to the potentially high 

value of these questions.  

• A Three-filtering-step recommendation system is 

recommended:  Based on insights and focuses 

mentioned above, we recommend business people try 

the three-filtering-steps recommendation system we 

built. The filtering hierarchically (Tag - Title - 

Question body) is tailored to the characteristics of 

Q&A platform Stack Overflow. 

 

7. Limitation & Future Improvement 

• Further feature engineering related to tag 

subscribers required:  Based on results from previous 

related research papers, we found features that capture 

user activation tend to have higher prediction power. 

To improve our model performance, we may extract 

data related to active subscribers in each tag and create 

certain metrics as input features. 

• Provide a better evaluation metric for the 

recommendation system: We did not implement 

metrics to evaluate the performance of our 

recommendation system because we do not have the 

computation power to collect enough recommendation 

samples. It can be done by inputting a sample of 

questions and getting recommendation questions for 

each sample question, and then identifying whether 

recommended questions are related to the input 

questions by humans and finally calculating recall and 

precision to evaluate performance. 

• Try multiple distance measures in the calculation of 

similarity for the recommendation system: Different 

distance measures such as Euclidean distance, Jaccard 

distance, or self-defined distance could be tried to 

quantify the similarity. 

 

8. Conclusion 

In this study, we explored potential features that may 

affect the waiting time of accepted answers for one post 

and built the waiting time prediction model. We showed 

that the waiting time prediction can be handled as a binary 

classification task. Based on actual data extracted from 

the Stack Overflow database, we found tag-related and 

text-related features play important roles in predictive 

power in the optimal model LightGBM with word 

vectorization. We also conducted machine learning 

interpretability analysis to have a deep dive into how 

features affect prediction outcomes in both the global and 

local settings.  

Based on the outcome of prediction models, we then 

proposed the recommendation model, which basic idea is 

built on cosine similarity of input text, to recommend 

similar posts to those questions that are predicted to have 

longer than 30mins waiting time. In the whole project we 

built an integrated pipeline from data extraction to time 

prediction, then to post recommendations, which is of real 

business value for managing user posting experience on 

Q&A platform like Stack Overflow. 
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Appendix 

Cont’d for 5.1.4 Machine Leaning Interpretability: 

 

 

Figure 12. PDP -  “Question_Char_Length” 

 

 

Figure 13. PDP -  “Tag_Class0_Numbers” 

 

 

Figure 14. PDP - “Tag_Score” 

 

 

Figure 15. PDP - “UserReputation” 

 

https://stackoverflow.com/help/whats-reputation
https://web.archive.org/web/20130609062938/http:/stackoverflow.com/help/whats-reputation


 

 

 

Figure 16. PDP - “Pandas” 

 

Cont’d for 5.2 Recommendation System Building - Case 

for Evaluation 

Input Question: 

 

Figure 17. Example – Question Asked 

Recommended Questions:  

 

 

Figure 18. Example - The 5 similar questions 
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