

Detection of Real Disasters from Tweets

Group 1: Ankit Malhotra (A0232322X), Cristian Bojaca (A0231999L), Liu Yishun (A0231849X), Ma Yuankai

(A0231868W), Yang Yuchen (A0119430N)

GitHub link: https://github.com/RobinNeverBow/BT5153-Group-Project

Abstract

Twitter has become an important communication
channel in times of emergency. The
ubiquitousness of smartphones enables people to
announce an emergency they are observing in
real-time. Because of this, more agencies are
interested in programmatically monitoring
Twitter. However, it is not always clear whether a
person’s words are actually announcing a disaster.
In this project, we aimed to implement various
natural language processing (NLP) techniques to
classify the tweets from the users on disasters into
real or non-real. Utilizing the balanced data set,
after the data preprocessing procedure, we
experimented with BOW models, BERT models,
Text CNN and GNN models and evaluated their
model performance based on accuracy, F-1 score
and ROC-AUC scores. Finally, we suggested the
potential application of the models for emergency
responses.

1. Introduction

1.1 Background

Nowadays, social media offers a realm of information on
varied topics ranging from news, politics, entertainment,
healthcare to recent trends, emotions, and opinions of
people worldwide. With the omnipresence of smartphones
and their easy accessibility by people of nearly all age
groups, it becomes considerably easy to disseminate ideas,
viewpoints, sentiments, and different schools of thought
with just a mere few clicks. This level of convenience in
reaching out to numerous people through online channels
becomes particularly essential in crises such as natural
disasters.

In such scenarios, social media platforms can play a pivotal

role in providing critical information about the

mishappening, including the type of disaster, its intensity

and precise location of occurrence, the problems people

face, and people's emotions and reactions, to name a few.

While there are different types of social networking

platforms available at our disposal, Twitter has turned out

to be probably one of the best mediums to find out real-

time information on what's happening around. Different

stakeholders involving national disaster relief

organizations, governments, media, volunteers, public,

etc., can use Twitter to collaborate swiftly and effectively.

However, the quality of information being posted by the

users often lacks authenticity, which can lead to

miscommunication and unbefitting actions by the relevant

parties concerned. This motivated us to address this issue

by filtering out the tweets which pertains to a real disaster,

based on natural language processing (NLP) techniques

and machine learning (ML) algorithms. In the forthcoming

sections, we will define the problem statement, dataset, and

the models that we implement to solve this problem.

1.2 Problem Statement

Our primary objective in this project is to classify the

tweets from the users on disasters into real (1) or non-real

(0). To clarify, for instance a user tweets some information

relating to a scenic view, and the tweet contains the

keyword ‘apocalypse’. Here, the word does not correspond

to a real disaster but is just used metaphorically. Thus, it

will not be classified as a disaster and will accordingly be

assigned a value of 0. Therefore, the objective of the study

is to build a classification model to accurately identify

tweets related to real disasters. Deployment of such a

model would enable governments or other relevant

agencies to monitor information on Twitter more

efficiently in order to rapidly respond to the emergencies.

2. Dataset Description

The main source of information is Kaggle's dataset on

"Natural Language Processing with Disaster Tweets"

(Kaggle, 2022). This dataset was originally created by the

company Figure Eight (now known as Appen) (Appen,

2021). It provides an adequate amount of data to deploy

NLP models (~ 11,000 tweets), which are ML techniques

trained from unstructured, specifically text data.

The dataset obtained from Kaggle contains the following

columns:

a) text: Contains the raw text extracted from the

tweet to be further analyzed

b) location: Establishes the location at which the

user was while sending the tweet

https://github.com/RobinNeverBow/BT5153-Group-Project

c) keyword: Provides the tweet's most relevant

word, however, does not establish the criteria

used to obtain this information

d) target: Whether a given tweet is about a real

disaster or not (1 if yes and 0 if no)

For our study, we will mainly focus on the text feature in

the dataset, as the keyword information are contained in the

text and the locations are not the emphasis of this NLP

study.

3. Exploratory Data Analysis

To verify the class imbalance of the target variable, we

examine the label distribution of the target column and the

results are shown in Figure 1.

Figure 1. Class distribution of the dataset

From the distribution, we can see that the split between the

two labels was around 57% to 43%, thus we would

consider it as a balanced data set and no data sampling

techniques are required before the modelling.

The distribution of the word counts per tweet is shown in

Figure 2. It can be observed that the word counts of real

and non-real disaster tweets are of a similar distribution.

The median number of words is around 10 and the

maximum number of words are around 25. The real

disaster tweets have less occurrences of length shorter than

5. This observation could indicate that tweets of very short

length, thus having limited information, are likely to be

non-real disaster tweets.

Figure 2. Distribution of word counts in tweets

We conduct a Part of Speech (POS) tagging to examine the

grammatical composition of the tweets. Syntactic

components are tagged using the spaCy pipline (spaCy,

2022), including the verbs, adjectives, nouns and proper

nouns. The counts of the various components are shown in

Figure 3. It can be observed that real and non-real disaster

tweets have similar number of verbs and adjectives.

However, interestingly, the real disaster tweets have on

average slightly more nouns and proper nouns. It is another

indication that real disaster tweets tend to have more

information.

Figure 3. Distribution of the counts of grammatical

components

To have a rough understanding on the differences between

real and non-real tweets, in terms of the contents, we take

a look at the word clouds, as shown in Figure 4 and Figure

5. We find that some frequent words in real disaster tweets,

such as ‘fire’, ‘storm’, and ‘Hiroshima’, are able to

pinpoint the type or location of the disasters and indicate

that its content might be relevant to real disasters.

Meanwhile, the frequent words in non-real disaster tweets,

such as ‘new’ and ‘time’, are not referring to disasters.

Therefore, the two types of tweets differ from each other in

the lexicons used. We would expect a reasonable

classification accuracy even with simple bag-of-word

models.

Figure 4. Word cloud of real disaster tweets

Figure 5. Word count of non-real disaster tweets

4. Data Pre-processing

4.1 Data Cleaning

This part is the preliminary data cleaning for Tweets

content, and the operations to be carried out included:

• Remove URLs, special characters, digits,

underline, and white spaces

• Make text lowercase

• Remove stopwords

• Correct the typos

• Remove the single letters

4.2 Word Lemmatization

Lemmatization here refers to, with the use of a vocabulary

and morphological analysis of words, remove inflectional

endings only and to return the base and dictionary form of

a word. The WordNetLemmatizer in nltk library is utilized.

5. Modeling

5.1 Bag of Word (BOW) Models

5.1.1 MOTIVATION

Given the problem statement, it is not always clear

whether the individual announcing the disaster

through a mere tweet is real or not. The tweets contain

a mix of spam and non-spam content, the automated

filtering of which makes it an important application.

The kind of application mentioned above urged us to

conduct a binary text classification problem (i.e. there

would be two outcomes of an event) starting with

simple bag of word models as the baseline.

5.1.2 METHODOLOGY

The data pre-processing step generated the cleaned

version of the text taking into consideration removal

of stopwords, digits, special characters, urls etc. Post

this, we proceeded to convert the cleaned text into

vector form through bag of word (BoW)

representations, more specifically by the term

frequency-inverse document frequency (TF-IDF)

(Ultraviolet Analytics, 2018), which represents the

score of the words in each tweet. The vector form of

the text, thus, renders it suitable for further analysis

and machine learning modeling.

The TF-IDF sparse vectors are used as the independent

variables in the classification models. The candidate

models chosen to be implemented were as follows:

• Logistic Regression (LR)

• Multinomial Naive Bayes (NB)

• Random Forest (RF)

• Support Vector Classifier (SVC)

• Light Gradient Boosting Machine (LGBM)

We selected three evaluation methods for each of the

models used. The metrics were: accuracy, ROC_AUC

score, and F1 score. ROC_AUC score provides the

tradeoff between true positive rate and false positive

rate, which would be relevant to the given problem as

we are interested in finding how many real disaster

tweets were actually classified as disasters by the

prediction models. Additionally, F1-score which is

based on the combination of two metrics, namely

precision and recall, is particularly well-suited for the

binary classification. The detailed rationale on the

choice of metrics will be discussed in Section 5.5.

We used these metrics to compare the optimal

performance of the machine learning classification

models with one another.

5.1.3 RESULTS

A comparative analysis of the accuracy, AUC score

and F1-score across five models used for text

classification has been shown in Table 1 below:

Table 1: Test Accuracy, AUC & F1-Score of ML

classification models

MODEL ROC

AUC

ACCURA

CY

F1 BEST

LR 0.81 0.81 0.75 x

NB 0.80 0.80 0.74 x

RF 0.79 0.79 0.74 x

SVC 0.82 0.81 0.75 ✔

LGBM 0.77 0.77 0.71 x

For the given binary classification problem, all the

models have a fair performance, however Logistic

Regression, Naive Bayes and SVC models perform

relatively better in terms of accuracy, AUC score and

F1 score. Ensemble models such as Random Forest

and LightGBM have a slightly lower accuracy after

tuning than the LR, NB and SVC models. This could

be due to that the feature space is approximately

linearly separable and thus the non-linear models do

not offer a performance edge. Overall, the SVC

performs the best and its confusion matrix is shown in

Table 4.

Table 4: Confusion matrix of SVC model

 PREDICT 0 PREDICT 1

TRUE 0 994 267

TRUE 1 97 546

To understand which words in the corpus contribute

the most to the classification, we plot the feature

importance of the top 10 words from the RF results, as

shown in Figure 6. We observe that words indicating

the type of disasters are important, such as ‘fire’,

‘bombing’ and ‘flood’. It is consistent with our

observations in the EDA that the real disaster tweets

can provide concrete information on the type of a

disaster. We also note that the two location words

‘Hiroshima’ and ‘California’ are important features.

That may be due to the two large disasters that are

frequently mentioned in the tweets, the Hiroshima

earthquake and the California wildfire.

Figure 6. Feature importance of RF model

5.1.4 STRENGTHS AND LIMITATIONS

We obtained a baseline accuracy of over 80% for three

classification models, namely LR, SVC and NB, laying a

solid foundation for this problem. While these models give

a fairly decent accuracy, they are based on the BoW

assumption that words are independent and no sequence

information is capture. Therefore, we could strive to

improve the prediction performance by using some state-

of the art text classification techniques, namely BERT,

TextCNN and GNN models, which will be discussed in the

forthcoming sections.

5.2 BERT + Ensemble models.

5.2.1 MODEL DESCRIPTION

The Bidirectional Encoder Representations from

Transformers (BERT) model generates contextually based

embeddings using bidirectional encoders from the

transformer's NN architecture (Khalid, 2019). BERT

models are particularly suitable for our disaster tweets

classification, as it is able to capture the multiple sense of

a word. For example, the word “fire” has different semantic

meanings in a real disaster tweet “Fire in Jurong East” and

a non-disaster tweet “I couldn’t fire up my car”. A static

embedding will not differentiate the two interpretations.

Thus, we would like to experiment and evaluate the

performance of BERT embedding.

Another critical feature of why BERT outperforms other

NLP techniques such as Bag of Words (BoW) is that it is

pre-trained using a large corpus. As a second step, it can be

fine-tuned to a specific dataset and a specific task such as

classification or text creation.

5.2.2 MODEL PRETRAINING

The model performs masking language model (MLM) and

next sentence prediction (NSP) to understand the context

of the text. Masking is a technique that trains the model to

guess the right word in the blank, and the next sentence

prediction technique tries to teach the model to recognize

the context of the text and think about what sentence makes

sense next.

The masking technique trains the model to use a

bidirectional context-based approach, as opposed to other

neural networks architectures that are unidirectional or

traditional NLP techniques (BoW) that are context-free.

5.2.3 MODEL DEPLOYMENT

The models' input is the text tokenized after adding

particular token embeddings such as CLS, a unique

embedding for classification tasks, and SEP that helps

understand the model at the end of each sentence.

Our team explores the BERT model as a preprocessing step

to combine it with some ensemble models such as Light

GBM, Gradient boosting, and Random forest. We use just

CLS embeddings as an input for the models, but we set the

max sentence length to 20 words due to computational

limitations.

5.2.4 RANDOMIZED SEARCH CROSS VALIDATION

For the hyper-parameter tuning, we used Randomized

Search CV to find the best possible model in contrast to

grid search; this approach improves the efficiency by

training just a sample of the possible combinations of the

hyper-parameters.

Table 2: Best hyper-parameters by model

MODEL L. RATE MAX

DEPTH

ESTIMATO

RS

BEST

RF NA 20 2500 ✔

LGBM 0.3 12 2500 x

GB 0.3 12 1500 x

BERT combined with ensemble models improved some of

the metrics, such as AUC, but the results were similar to

the traditional models for some others, such as accuracy

and F1 score.

Table 3: Test Accuracy, AUC & F1-Score of BERT

classification models

MODEL ROC

AUC

ACCURA

CY
F1 BEST

RF 0.81 0.76 0.70 ✔

LGBM 0.80 0.74 0.68 x

GB 0.80 0.75 0.69 x

Among the models explored, the random forest has the

highest performance in all the metrics. The confusion

matrix of the RF model is shown in Table 4, where we can

observe other metrics such as sensitivity and recall in more

details.

Table 4: Confusion matrix of BERT+RF model

 PREDICT 0 PREDICT 1

TRUE 0 939 152

TRUE 1 299 514

5.3 BERT + Text CNN

5.3.1 TEXT CONVOLUTIONAL NEURAL NETWORK (CNN)

Text can be seen as a one-dimensional image, so that we

can use one-dimensional convolutional neural networks to

capture associations between adjacent words.

One of the important parts of Text CNN is the one-

dimensional convolutional layer. Like a two-dimensional

convolutional layer, a one-dimensional convolutional layer

uses a one-dimensional cross-correlation operation. In this

operation, the convolution window starts from the leftmost

side of the input array and slides on the input array from

left to right successively. When the convolution window

slides to a certain position, the input subarray in the

window and kernel array are multiplied and summed by

element to get the element at the corresponding location in

the output array, as illustrated in Figure 7.

Figure 7. Convolution of Text CNN

Similarly, we have a one-dimensional pooling layer. The

max-over-time pooling layer used in Text CNN actually

corresponds to a one-dimensional global maximum

pooling layer. Assuming that the input contains multiple

channels, and each channel consists of values on different

time steps, the output of each channel will be the largest

value of all time steps in the channel. Therefore, the input

of the max-over-time pooling layer can have different time

steps on each channel.

5.3.2 TEXT CNN MODELING

We implement the previously discussed Text CNN on our

disaster tweet classification problem. Before we feed the

data to the text CNN model, we use a BERT transformer to

convert our data to a 3D tensor. Different from Section 5.2,

here we will use all the BERT last layer hidden outputs of

each word.

Due to the computational power limitation, we have to

limit the max sentence length, in this case, we choose the

average sentence length, which is 32. We do padding for

each text and feed it to the BERT transformer to get the

output. Still because of the memory size issue, we cannot

save all 768 dimensions of each word. So, we choose the

last 64 dimensions and each word is converted to a 64-

dimension embedding vector.

Now, we construct a text CNN model. First connect the

input to four 1D convolutional layers with filter size of 128,

with kernel size of 2, 3, 5 and 7 respectively. Then connect

all the output to max pooling layers and concatenate them

together. The output are then connected to a six-layer fully-

connected neural network with drop out and batch

normalization. The structure of this model is shown in the

Appendix.

5.3.3 TEXT CNN RESULTS

At about 150 epochs, the train and test accuracies are

stable. The train/test accuracy at every epoch is plotted in

Figure 8.

Figure 8. Train/test accuracy of BERT+Text CNN model

We use the best Text CNN model to get the test

performance, which achieves an accuracy of 0.7957, ROC

AUC score of 0.8500, and a f1 score of 0.7482. The

confusion matrix is shown in Table 5.

Table 5: Confusion matrix of BERT+Text CNN model

 PREDICT 0 PREDICT 1

TRUE 0 937 154

TRUE 1 235 578

5.4 Graph Convolution Network (GCN)

Graph neural network (GNN) has attracted increasing

attention as a method of graph analysis in many domains

such as social network, knowledge graph etc. GNN is able

to capture the dependencies between graph nodes, and also

preserve the global structure information of a graph in the

embeddings. As the state of art, GNN has been applied to

text classification problems, where the training corpus is

used to build graph representations of vocabulary and

documents. In this study, we explore this novel method for

the binary disaster tweet classification problem.

5.4.1 Graph

For our study, we implemented the graph convolution

network (GCN) text classification method proposed by

Yao et al. (2019). The graph is built using the entire corpus

where the nodes are the unique words and the documents

with the training documents labeled and test documents

unlabelled, as illustrated in Figure 8. The document-word

edges represent the word occurrence in the documents, and

its weight is calculated using the term frequency-inverse

document frequency (TF-IDF) of a word in a document.

These edges capture the semantics of the documents i.e.,

the tweets. The word-word edges represent the co-

occurrence of words, where the weights are calculated by

the pointwise mutual information (PMI) with a sliding

window size 10. Words that are highly correlated in

semantics will have a higher weight on the edge between

them. The PMI value of a word pair i,j is computed as

𝑃𝑀𝐼(𝑖, 𝑗) = 𝑙𝑜𝑔
𝑝(𝑖, 𝑗)

𝑝(𝑖)𝑝(𝑗)

𝑝(𝑖, 𝑗) =
#𝑊(𝑖, 𝑗)

#𝑊
, 𝑝(𝑖) =

#𝑊(𝑖)

#𝑊

where #W(i,j) is the number of windows containing word i

and word j, #W(i) is the number of windows containing

word i, #W is the total number of windows in the entire

corpus.

Figure 8. Graph built on documents and vocabulary with

document-word edges (red) and word-word edges (black)

5.4.2 CONVOLUTION NEURAL NETWORK

Unlike the pixels in image data, graph nodes do not have a

structured spatial relationship. To perform convolutions on

the graph, we implement the two-layer GCN proposed by

Kipf and Welling (2016), which generates, directly from

the graph, embedding vectors for the nodes based on their

neighborhoods. The embeddings are then fed into a

softmax classifier for the text classification. The

embeddings output from the second layer of the GCN is

𝐿(2) = 𝐴̃𝑅𝑒𝐿𝑈(𝐴̃𝑋𝑊0)𝑊1

𝐴̃ = 𝐷−
1
2𝐴𝐷−

1
2

where A is the adjacency matrix of the graph, D is the

degree matrix of A (𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗𝑗
), X is the diagonal square

matrix of ones of the dimension of the number of nodes,

W0 and W1 are the weight matrix of the first and second

layer respectively.

Yao et al. (2019) suggest that two hidden layers GCN

allows the information to be passed to nodes that are two

steps away, which enable the information exchange

between documents even though there are no document-

document edges in the graph. It is also reported that more

layers beyond two does not improve the classification

performance. Therefore, we set a two-convolution-layer

structure, with the layer size of 330 and 130 respectively.

5.4.3 GCN RESULTS

The previously mentioned GCN is implemented for the

disaster tweet classification in this study. One important

observation is that the graph size is huge if built on the

entire dataset. The number of edges is roughly of the order

of [#doc*#vocab+0.5*(#vocab)2]. Due to the memory

constraint, we use a random sample of 1000 data points

from the dataset. And 75% of documents are used as the

training nodes, 25% as the testing nodes.

We train the model for 1000 epochs, and the train/test

accuracy is plotted below in Figure 9. The best accuracy,

ROC_AUC and F1 score of the model are 0.61, 0.63 and

0.58 respectively. The accuracy of the model is not as good

as the other models we examined previously. It could be

due to the small fraction of the data we used for training.

The graph needs to be generated every time new test data

are fed in for classification. This process takes long and

would result in high latency if deployed to real

applications. Together with the large memory requirement

for the graph, we may conclude that the GCN method is

suitable for the text classification tasks where the available

training data are limited. If resources allow, further

experiments with the whole dataset shall be conducted to

gauge its performance against other models.

Figure 9. Cross entropy loss vs. Epoch (above),

Train/Test accuracy vs. Epoch (below)

5.5 Model evaluation

For this study, we evaluate the model performance

based on the accuracy, ROC_AUC score and F1 score.

Accuracy provides a simple and classic measurement

of the binary classifiers’ overall performance.

However, it is biased towards the majority class.

ROC_AUC offers an evaluation of the model

independent of the class distribution and is thus chosen

as another metric.

Normally, the choice of emphasis on the model

precision or recall will be based on the application and

the tradeoff between Type I and Type II error cost. For

example, in our case, if the purpose of the application

is to identify as many potential disasters as possible

and the manual screening of false positive tweets cost

little, the model evaluation shall focus on the recall.

On the contrary, if the model is deployed with

minimum human screening, it would be beneficial to

have a high-precision model to reduce the cost of the

false alarms. In this study, as the model could be

potentially applied to both scenarios, we use F1 score,

the harmonic mean of precision and recall, as the

metric to achieve a balance.

The performance of the models examined are

summarized in Table 5.

Table 5. Summary of model performance.

MODEL ROC

AUC

ACCURACY F1

TF-IDF+LR 0.81 0.81 0.75

TF-IDF+NB 0.80 0.80 0.74

TF-IDF+RF 0.79 0.79 0.74

TF-IDF+SVC 0.82 0.81 0.75

TF-IDF+LGBM 0.77 0.77 0.71

BERT+RF 0.81 0.76 0.70

BERT+LGBM 0.80 0.74 0.68

BERT+GB 0.80 0.75 0.69

BERT+TEXT CNN 0.85 0.80 0.75

GCN* 0.63 0.61 0.58

*Built on an undersampled dataset

Overall, when we look at the prior-independent metric

ROC_AUC, the BERT+Text CNN model performs best as

we expected, due to its contextual embedding. However, in

terms of accuracy and F1 score, the BOW models

outperform BERT marginally. That could potentially be

due to the slight class imbalance in the dataset.

With adequate resources, the BERT models could be

further improved by fine tuning the parameters instead of

using the fixed pre-trained ones. Additionally, the

performance may improve if we use the complete

embedding vectors instead of the truncated ones.

6. Application

The deployment of the model could potentially help

emergency response agencies to monitor social media to

identify disasters and collect anecdotal reports, which

could contain crucial insights for planning the response

strategies. The detected tweets are likely to offer temporal

and spatial details about a tragedy and may be used to guide

aids, rescues, and restorations.

Additionally, the model might create business insights as

well. For example, news companies could potentially

utilize it to obtain first-hand information about disasters to

stay ahead of competitors. Also, the classification models

that we explored can be combined with text generator

models, such as GPT3, to inform the people on social

media without any human supervision, increasing the

efficiency of the communication industry.

Lastly, since the police, firefighters, and government

agencies have limited staff, we can combine in a first step

to identify real disaster information and then automatically

perform sentiment analysis to allocate the human resources

as efficiently as possible.

7. Conclusion

We started defining a baseline performance using

traditional machine learning models and BoW

embeddings, which achieves a decent performance. In the

second stage, we explored the BERT model with

contextual information that improved some of the metrics,

such as ROC_AUC, but the results are similar to the

traditional models for some others, such as accuracy.

Another novel technique we explored is Graph

Convolution Network (GNC). This model also

underperforms compared to the baseline. Still, it is worth

noting that although the GNC and BERT models can

capture more sophisticated relationships in the text, we

face computational limitations that explain the

underperformance of the models. The GNC use a small

portion of the dataset for training, and with the BERT

models, we have to limit the size of the embeddings

considerably and cannot fine-tune the model due to

memory constraints.

The explored models provide feasible solutions for disaster

tweets identification on social networks, which see

promising applications for emergency responses.

References

Datasets resource center. Appen. (2021, March).

Retrieved April 24, 2022, from

https://appen.com/datasets-resource-center/

English · spacy models documentation. spaCy. (2022).

Retrieved April 24, 2022, from

https://spacy.io/models/en

Khalid, S. (2019, November). Bert explained: A Complete

Guide with Theory and tutorial. Medium.

Retrieved April 24, 2022, from

https://medium.com/@samia.khalid/bert-

explained-a-complete-guide-with-theory-and-

tutorial-3ac9ebc8fa7c

Kipf, T. N., & Welling, M. (2016). Semi-supervised

classification with graph convolutional networks.

arXiv preprint arXiv:1609.02907.

Natural language processing with disaster tweets.

Kaggle. (2022). Retrieved April 24, 2022, from

https://www.kaggle.com/c/nlp-getting-

started/overview

TF-IDF Basics with pandas and Scikit-Learn. Ultraviolet

Analytics. (2018). Retrieved April 24, 2022, from

http://www.ultravioletanalytics.com/blog/tf-idf-

basics-with-pandas-scikit-learn

Yao, L., Mao, C., & Luo, Y. (2019). Graph convolutional

networks for text classification. Proceedings of the

AAAI Conference on Artificial Intelligence, 33,

7370–7377.

https://doi.org/10.1609/aaai.v33i01.33017370

Appendix – BERT+Text CNN Structure

