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Abstract  

Twitter has become an important communication 
channel in times of emergency. The 
ubiquitousness of smartphones enables people to 
announce an emergency they are observing in 
real-time. Because of this, more agencies are 
interested in programmatically monitoring 
Twitter. However, it is not always clear whether a 
person’s words are actually announcing a disaster. 
In this project, we aimed to implement various 
natural language processing (NLP) techniques to 
classify the tweets from the users on disasters into 
real or non-real. Utilizing the balanced data set, 
after the data preprocessing procedure, we 
experimented with BOW models, BERT models, 
Text CNN and GNN models and evaluated their 
model performance based on accuracy, F-1 score 
and ROC-AUC scores. Finally, we suggested the 
potential application of the models for emergency 
responses.  

1.  Introduction 

1.1  Background 

Nowadays, social media offers a realm of information on 
varied topics ranging from news, politics, entertainment, 
healthcare to recent trends, emotions, and opinions of 
people worldwide. With the omnipresence of smartphones 
and their easy accessibility by people of nearly all age 
groups, it becomes considerably easy to disseminate ideas, 
viewpoints, sentiments, and different schools of thought 
with just a mere few clicks. This level of convenience in 
reaching out to numerous people through online channels 
becomes particularly essential in crises such as natural 
disasters.  

In such scenarios, social media platforms can play a pivotal 

role in providing critical information about the 

mishappening, including the type of disaster, its intensity 

and precise location of occurrence, the problems people 

face, and people's emotions and reactions, to name a few.  

While there are different types of social networking 

platforms available at our disposal, Twitter has turned out 

to be probably one of the best mediums to find out real-

time information on what's happening around. Different 

stakeholders involving national disaster relief 

organizations, governments, media, volunteers, public,  

 

etc., can use Twitter to collaborate swiftly and effectively.  

However, the quality of information being posted by the 

users often lacks authenticity, which can lead to 

miscommunication and unbefitting actions by the relevant 

parties concerned. This motivated us to address this issue 

by filtering out the tweets which pertains to a real disaster, 

based on natural language processing (NLP) techniques 

and machine learning (ML) algorithms. In the forthcoming 

sections, we will define the problem statement, dataset, and 

the models that we implement to solve this problem. 

1.2  Problem Statement 

Our primary objective in this project is to classify the 

tweets from the users on disasters into real (1) or non-real 

(0). To clarify, for instance a user tweets some information 

relating to a scenic view, and the tweet contains the 

keyword ‘apocalypse’. Here, the word does not correspond 

to a real disaster but is just used metaphorically. Thus, it 

will not be classified as a disaster and will accordingly be 

assigned a value of 0. Therefore, the objective of the study 

is to build a classification model to accurately identify 

tweets related to real disasters. Deployment of such a 

model would enable governments or other relevant 

agencies to monitor information on Twitter more 

efficiently in order to rapidly respond to the emergencies.  

2.  Dataset Description 

The main source of information is Kaggle's dataset on 

"Natural Language Processing with Disaster Tweets" 

(Kaggle, 2022). This dataset was originally created by the 

company Figure Eight (now known as Appen) (Appen, 

2021). It provides an adequate amount of data to deploy 

NLP models (~ 11,000 tweets), which are ML techniques 

trained from unstructured, specifically text data. 

 

The dataset obtained from Kaggle contains the following 

columns:  

 

a) text: Contains the raw text extracted from the 

tweet to be further analyzed 

b) location: Establishes the location at which the 

user was while sending the tweet 
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c) keyword: Provides the tweet's most relevant 

word, however, does not establish the criteria 

used to obtain this information 

d) target: Whether a given tweet is about a real 

disaster or not (1 if yes and 0 if no) 

 

For our study, we will mainly focus on the text feature in 

the dataset, as the keyword information are contained in the 

text and the locations are not the emphasis of this NLP 

study. 

3.  Exploratory Data Analysis 

To verify the class imbalance of the target variable, we 

examine the label distribution of the target column and the 

results are shown in Figure 1. 

 

 

 

Figure 1. Class distribution of the dataset 

 

 

From the distribution, we can see that the split between the 

two labels was around 57% to 43%, thus we would 

consider it as a balanced data set and no data sampling 

techniques are required before the modelling. 

The distribution of the word counts per tweet is shown in 

Figure 2. It can be observed that the word counts of real 

and non-real disaster tweets are of a similar distribution. 

The median number of words is around 10 and the 

maximum number of words are around 25. The real 

disaster tweets have less occurrences of length shorter than 

5. This observation could indicate that tweets of very short 

length, thus having limited information, are likely to be 

non-real disaster tweets. 

 

 

 

Figure 2. Distribution of word counts in tweets 

 

We conduct a Part of Speech (POS) tagging to examine the 

grammatical composition of the tweets. Syntactic 

components are tagged using the spaCy pipline (spaCy, 

2022), including the verbs, adjectives, nouns and proper 

nouns. The counts of the various components are shown in 

Figure 3. It can be observed that real and non-real disaster 

tweets have similar number of verbs and adjectives. 

However, interestingly, the real disaster tweets have on 

average slightly more nouns and proper nouns. It is another 

indication that real disaster tweets tend to have more 

information. 

 

 

Figure 3. Distribution of the counts of grammatical 

components 

 

 

To have a rough understanding on the differences between 

real and non-real tweets, in terms of the contents, we take 

a look at the word clouds, as shown in Figure 4 and Figure 

5. We find that some frequent words in real disaster tweets, 

such as ‘fire’, ‘storm’, and ‘Hiroshima’, are able to 

pinpoint the type or location of the disasters and indicate 

that its content might be relevant to real disasters. 

Meanwhile, the frequent words in non-real disaster tweets, 

such as ‘new’ and ‘time’, are not referring to disasters. 

Therefore, the two types of tweets differ from each other in 

the lexicons used. We would expect a reasonable 

classification accuracy even with simple bag-of-word 

models. 

 

 



 

 

 

Figure 4. Word cloud of real disaster tweets 

 

 

Figure 5. Word count of non-real disaster tweets 

 

4.  Data Pre-processing 

4.1  Data Cleaning 

This part is the preliminary data cleaning for Tweets 

content, and the operations to be carried out included: 

 

• Remove URLs, special characters, digits, 

underline, and white spaces 

• Make text lowercase 

• Remove stopwords 

• Correct the typos 

• Remove the single letters 

4.2  Word Lemmatization 

Lemmatization here refers to, with the use of a vocabulary 

and morphological analysis of words, remove inflectional 

endings only and to return the base and dictionary form of 

a word. The WordNetLemmatizer in nltk library is utilized. 

5.  Modeling 

5.1  Bag of Word (BOW) Models 

5.1.1  MOTIVATION 

Given the problem statement, it is not always clear 

whether the individual announcing the disaster 

through a mere tweet is real or not. The tweets contain 

a mix of spam and non-spam content, the automated 

filtering of which makes it an important application. 

The kind of application mentioned above urged us to 

conduct a binary text classification problem (i.e. there 

would be two outcomes of an event) starting with 

simple bag of word models as the baseline.  

5.1.2  METHODOLOGY 

The data pre-processing step generated the cleaned 

version of the text taking into consideration removal 

of stopwords, digits, special characters, urls etc. Post 

this, we proceeded to convert the cleaned text into 

vector form through bag of word (BoW) 

representations, more specifically by the term 

frequency-inverse document frequency (TF-IDF) 

(Ultraviolet Analytics, 2018), which represents the 

score of the words in each tweet. The vector form of 

the text, thus, renders it suitable for further analysis 

and machine learning modeling.   

The TF-IDF sparse vectors are used as the independent 

variables in the classification models. The candidate 

models chosen to be implemented were as follows: 

• Logistic Regression (LR) 

• Multinomial Naive Bayes (NB)  

• Random Forest (RF) 

• Support Vector Classifier (SVC) 

• Light Gradient Boosting Machine (LGBM) 

We selected three evaluation methods for each of the 

models used. The metrics were: accuracy, ROC_AUC 

score, and F1 score. ROC_AUC score provides the 

tradeoff between true positive rate and false positive 

rate, which would be relevant to the given problem as 

we are interested in finding how many real disaster 

tweets were actually classified as disasters by the 

prediction models. Additionally, F1-score which is 

based on the combination of two metrics, namely 

precision and recall, is particularly well-suited for the 

binary classification. The detailed rationale on the 

choice of metrics will be discussed in Section 5.5. 

We used these metrics to compare the optimal 

performance of the machine learning classification 

models with one another.  

5.1.3  RESULTS 

A comparative analysis of the accuracy, AUC score 

and F1-score across five models used for text 

classification has been shown in Table 1 below: 



 

 

Table 1: Test Accuracy, AUC & F1-Score of ML 

classification models 

MODEL ROC 

AUC 

ACCURA

CY 

F1 BEST 

LR 0.81 0.81 0.75 x 

NB 0.80 0.80 0.74 x 

RF 0.79 0.79 0.74 x 

SVC 0.82 0.81 0.75 ✔ 

LGBM 0.77 0.77 0.71 x 

 

For the given binary classification problem, all the 

models have a fair performance, however Logistic 

Regression, Naive Bayes and SVC models perform 

relatively better in terms of accuracy, AUC score and 

F1 score. Ensemble models such as Random Forest 

and LightGBM have a slightly lower accuracy after 

tuning than the LR, NB and SVC models. This could 

be due to that the feature space is approximately 

linearly separable and thus the non-linear models do 

not offer a performance edge. Overall, the SVC 

performs the best and its confusion matrix is shown in 

Table 4. 

Table 4: Confusion matrix of SVC model 

 PREDICT 0 PREDICT 1 

TRUE 0 994 267 

TRUE 1 97 546 

 

To understand which words in the corpus contribute 

the most to the classification, we plot the feature 

importance of the top 10 words from the RF results, as 

shown in Figure 6. We observe that words indicating 

the type of disasters are important, such as ‘fire’, 

‘bombing’ and ‘flood’. It is consistent with our 

observations in the EDA that the real disaster tweets 

can provide concrete information on the type of a 

disaster. We also note that the two location words 

‘Hiroshima’ and ‘California’ are important features. 

That may be due to the two large disasters that are 

frequently mentioned in the tweets, the Hiroshima 

earthquake and the California wildfire. 

 

Figure 6. Feature importance of RF model 

 

5.1.4  STRENGTHS AND LIMITATIONS 

We obtained a baseline accuracy of over 80% for three 

classification models, namely LR, SVC and NB, laying a 

solid foundation for this problem. While these models give 

a fairly decent accuracy, they are based on the BoW 

assumption that words are independent and no sequence 

information is capture. Therefore, we could strive to 

improve the prediction performance by using some state-

of the art text classification techniques, namely BERT, 

TextCNN and GNN models, which will be discussed in the 

forthcoming sections.    

 

5.2  BERT + Ensemble models. 

5.2.1   MODEL DESCRIPTION 

The Bidirectional Encoder Representations from 

Transformers (BERT) model generates contextually based 

embeddings using bidirectional encoders from the 

transformer's NN architecture (Khalid, 2019). BERT 

models are particularly suitable for our disaster tweets 

classification, as it is able to capture the multiple sense of 

a word. For example, the word “fire” has different semantic 

meanings in a real disaster tweet “Fire in Jurong East” and 

a non-disaster tweet “I couldn’t fire up my car”. A static 

embedding will not differentiate the two interpretations. 

Thus, we would like to experiment and evaluate the 

performance of BERT embedding. 

Another critical feature of why BERT outperforms other 

NLP techniques such as Bag of Words (BoW) is that it is 

pre-trained using a large corpus. As a second step, it can be 

fine-tuned to a specific dataset and a specific task such as 

classification or text creation. 

 

5.2.2  MODEL PRETRAINING 



 

 

The model performs masking language model (MLM) and 

next sentence prediction (NSP) to understand the context 

of the text. Masking is a technique that trains the model to 

guess the right word in the blank, and the next sentence 

prediction technique tries to teach the model to recognize 

the context of the text and think about what sentence makes 

sense next. 

The masking technique trains the model to use a 

bidirectional context-based approach, as opposed to other 

neural networks architectures that are unidirectional or 

traditional NLP techniques (BoW) that are context-free. 

 

5.2.3  MODEL DEPLOYMENT 

The models' input is the text tokenized after adding 

particular token embeddings such as CLS, a unique 

embedding for classification tasks, and SEP that helps 

understand the model at the end of each sentence. 

Our team explores the BERT model as a preprocessing step 

to combine it with some ensemble models such as Light 

GBM, Gradient boosting, and Random forest. We use just 

CLS embeddings as an input for the models, but we set the 

max sentence length to 20 words due to computational 

limitations. 

 

5.2.4  RANDOMIZED SEARCH CROSS VALIDATION 

For the hyper-parameter tuning, we used Randomized 

Search CV to find the best possible model in contrast to 

grid search; this approach improves the efficiency by 

training just a sample of the possible combinations of the 

hyper-parameters. 

Table 2: Best hyper-parameters by model 

MODEL L. RATE MAX 

DEPTH 

# 

ESTIMATO

RS 

BEST 

RF NA 20 2500 ✔ 

LGBM 0.3 12 2500 x 

GB 0.3 12 1500 x 

 

BERT combined with ensemble models improved some of 

the metrics, such as AUC, but the results were similar to 

the traditional models for some others, such as accuracy 

and F1 score. 

 

 

 

Table 3: Test Accuracy, AUC & F1-Score of BERT 

classification models 

MODEL ROC 

AUC 

ACCURA

CY 
F1 BEST 

RF 0.81 0.76 0.70 ✔ 

LGBM 0.80 0.74 0.68 x 

GB 0.80 0.75 0.69 x 

 

Among the models explored, the random forest has the 

highest performance in all the metrics. The confusion 

matrix of the RF model is shown in Table 4, where we can 

observe other metrics such as sensitivity and recall in more 

details. 

Table 4: Confusion matrix of BERT+RF model 

 PREDICT 0 PREDICT 1 

TRUE 0 939 152 

TRUE 1 299 514 

 

 

5.3  BERT + Text CNN 

5.3.1  TEXT CONVOLUTIONAL NEURAL NETWORK (CNN) 

Text can be seen as a one-dimensional image, so that we 

can use one-dimensional convolutional neural networks to 

capture associations between adjacent words. 

One of the important parts of Text CNN is the one-

dimensional convolutional layer. Like a two-dimensional 

convolutional layer, a one-dimensional convolutional layer 

uses a one-dimensional cross-correlation operation. In this 

operation, the convolution window starts from the leftmost 

side of the input array and slides on the input array from 

left to right successively. When the convolution window 

slides to a certain position, the input subarray in the 

window and kernel array are multiplied and summed by 

element to get the element at the corresponding location in 

the output array, as illustrated in Figure 7. 

 

Figure 7. Convolution of Text CNN 

 

Similarly, we have a one-dimensional pooling layer. The 

max-over-time pooling layer used in Text CNN actually 

corresponds to a one-dimensional global maximum 



 

 

pooling layer. Assuming that the input contains multiple 

channels, and each channel consists of values on different 

time steps, the output of each channel will be the largest 

value of all time steps in the channel. Therefore, the input 

of the max-over-time pooling layer can have different time 

steps on each channel. 

 

5.3.2  TEXT CNN MODELING 

We implement the previously discussed Text CNN on our 

disaster tweet classification problem. Before we feed the 

data to the text CNN model, we use a BERT transformer to 

convert our data to a 3D tensor. Different from Section 5.2, 

here we will use all the BERT last layer hidden outputs of 

each word. 

Due to the computational power limitation, we have to 

limit the max sentence length, in this case, we choose the 

average sentence length, which is 32. We do padding for 

each text and feed it to the BERT transformer to get the 

output. Still because of the memory size issue, we cannot 

save all 768 dimensions of each word. So, we choose the 

last 64 dimensions and each word is converted to a 64-

dimension embedding vector. 

Now, we construct a text CNN model. First connect the 

input to four 1D convolutional layers with filter size of 128, 

with kernel size of 2, 3, 5 and 7 respectively. Then connect 

all the output to max pooling layers and concatenate them 

together. The output are then connected to a six-layer fully-

connected neural network with drop out and batch 

normalization. The structure of this model is shown in the 

Appendix. 

 

5.3.3  TEXT CNN RESULTS 

At about 150 epochs, the train and test accuracies are 

stable. The train/test accuracy at every epoch is plotted in 

Figure 8. 

 

 

Figure 8. Train/test accuracy of BERT+Text CNN model 

 

 

We use the best Text CNN model to get the test 

performance, which achieves an accuracy of 0.7957, ROC 

AUC score of 0.8500, and a f1 score of 0.7482. The 

confusion matrix is shown in Table 5. 

Table 5: Confusion matrix of BERT+Text CNN model 

 PREDICT 0 PREDICT 1 

TRUE 0 937 154 

TRUE 1 235 578 

 

 

5.4  Graph Convolution Network (GCN) 

Graph neural network (GNN) has attracted increasing 

attention as a method of graph analysis in many domains 

such as social network, knowledge graph etc. GNN is able 

to capture the dependencies between graph nodes, and also 

preserve the global structure information of a graph in the 

embeddings. As the state of art, GNN has been applied to 

text classification problems, where the training corpus is 

used to build graph representations of vocabulary and 

documents. In this study, we explore this novel method for 

the binary disaster tweet classification problem. 

5.4.1  Graph 

For our study, we implemented the graph convolution 

network (GCN) text classification method proposed by 

Yao et al. (2019).  The graph is built using the entire corpus 

where the nodes are the unique words and the documents 

with the training documents labeled and test documents 

unlabelled, as illustrated in Figure 8. The document-word 

edges represent the word occurrence in the documents, and 

its weight is calculated using the term frequency-inverse 

document frequency (TF-IDF) of a word in a document. 

These edges capture the semantics of the documents i.e., 

the tweets. The word-word edges represent the co-

occurrence of words, where the weights are calculated by 

the pointwise mutual information (PMI) with a sliding 

window size 10. Words that are highly correlated in 

semantics will have a higher weight on the edge between 

them. The PMI value of a word pair i,j is computed as  

𝑃𝑀𝐼(𝑖, 𝑗) = 𝑙𝑜𝑔
𝑝(𝑖, 𝑗)

𝑝(𝑖)𝑝(𝑗)

 

𝑝(𝑖, 𝑗) =
#𝑊(𝑖, 𝑗)

#𝑊
, 𝑝(𝑖) =

#𝑊(𝑖)

#𝑊

 



 

 

 

where #W(i,j) is the number of windows containing word i 

and word j, #W(i) is the number of windows containing 

word i, #W is the total number of windows in the entire 

corpus.  

 

 

Figure 8. Graph built on documents and vocabulary with 

document-word edges (red) and word-word edges (black) 

5.4.2  CONVOLUTION NEURAL NETWORK 

Unlike the pixels in image data, graph nodes do not have a 

structured spatial relationship. To perform convolutions on 

the graph, we implement the two-layer GCN proposed by 

Kipf and Welling (2016), which generates, directly from 

the graph, embedding vectors for the nodes based on their 

neighborhoods. The embeddings are then fed into a 

softmax classifier for the text classification. The 

embeddings output from the second layer of the GCN is 

 

𝐿(2) = 𝐴̃𝑅𝑒𝐿𝑈(𝐴̃𝑋𝑊0)𝑊1
 

𝐴̃ = 𝐷−
1
2𝐴𝐷−

1
2
 

 

where A is the adjacency matrix of the graph, D is the 

degree matrix of A (𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗𝑗
), X is the diagonal square 

matrix of ones of the dimension of the number of nodes, 

W0 and W1 are the weight matrix of the first and second 

layer respectively. 

Yao et al. (2019) suggest that two hidden layers GCN 

allows the information to be passed to nodes that are two 

steps away, which enable the information exchange 

between documents even though there are no document-

document edges in the graph. It is also reported that more 

layers beyond two does not improve the classification 

performance. Therefore, we set a two-convolution-layer 

structure, with the layer size of 330 and 130 respectively. 

 

5.4.3  GCN RESULTS 

The previously mentioned GCN is implemented for the 

disaster tweet classification in this study. One important 

observation is that the graph size is huge if built on the 

entire dataset. The number of edges is roughly of the order 

of [#doc*#vocab+0.5*(#vocab)2]. Due to the memory 

constraint, we use a random sample of 1000 data points 

from the dataset. And 75% of documents are used as the 

training nodes, 25% as the testing nodes. 

We train the model for 1000 epochs, and the train/test 

accuracy is plotted below in Figure 9. The best accuracy, 

ROC_AUC and F1 score of the model are 0.61, 0.63 and 

0.58 respectively. The accuracy of the model is not as good 

as the other models we examined previously. It could be 

due to the small fraction of the data we used for training.  

The graph needs to be generated every time new test data 

are fed in for classification. This process takes long and 

would result in high latency if deployed to real 

applications. Together with the large memory requirement 

for the graph, we may conclude that the GCN method is 

suitable for the text classification tasks where the available 

training data are limited. If resources allow, further 

experiments with the whole dataset shall be conducted to 

gauge its performance against other models. 

 

 

Figure 9. Cross entropy loss vs. Epoch (above), 

Train/Test accuracy vs. Epoch (below) 

 

5.5  Model evaluation 

For this study, we evaluate the model performance 

based on the accuracy, ROC_AUC score and F1 score. 

Accuracy provides a simple and classic measurement 

of the binary classifiers’ overall performance. 

However, it is biased towards the majority class. 

ROC_AUC offers an evaluation of the model 

independent of the class distribution and is thus chosen 

as another metric.  



 

 

Normally, the choice of emphasis on the model 

precision or recall will be based on the application and 

the tradeoff between Type I and Type II error cost. For 

example, in our case, if the purpose of the application 

is to identify as many potential disasters as possible 

and the manual screening of false positive tweets cost 

little, the model evaluation shall focus on the recall. 

On the contrary, if the model is deployed with 

minimum human screening, it would be beneficial to 

have a high-precision model to reduce the cost of the 

false alarms. In this study, as the model could be 

potentially applied to both scenarios, we use F1 score, 

the harmonic mean of precision and recall, as the 

metric to achieve a balance. 

The performance of the models examined are 

summarized in Table 5. 

Table 5. Summary of model performance. 

MODEL ROC 

AUC 

ACCURACY F1 

TF-IDF+LR 0.81 0.81 0.75 

TF-IDF+NB 0.80 0.80 0.74 

TF-IDF+RF 0.79 0.79 0.74 

TF-IDF+SVC 0.82 0.81 0.75 

TF-IDF+LGBM 0.77 0.77 0.71 

BERT+RF 0.81 0.76 0.70 

BERT+LGBM 0.80 0.74 0.68 

BERT+GB 0.80 0.75 0.69 

BERT+TEXT CNN 0.85 0.80 0.75 

GCN* 0.63 0.61 0.58 

*Built on an undersampled dataset 

 

Overall, when we look at the prior-independent metric 

ROC_AUC, the BERT+Text CNN model performs best as 

we expected, due to its contextual embedding. However, in 

terms of accuracy and F1 score, the BOW models 

outperform BERT marginally. That could potentially be 

due to the slight class imbalance in the dataset.  

With adequate resources, the BERT models could be 

further improved by fine tuning the parameters instead of 

using the fixed pre-trained ones. Additionally, the 

performance may improve if we use the complete 

embedding vectors instead of the truncated ones. 

 

6.  Application 

The deployment of the model could potentially help 

emergency response agencies to monitor social media to 

identify disasters and collect anecdotal reports, which 

could contain crucial insights for planning the response 

strategies. The detected tweets are likely to offer temporal 

and spatial details about a tragedy and may be used to guide 

aids, rescues, and restorations. 

Additionally, the model might create business insights as 

well. For example, news companies could potentially 

utilize it to obtain first-hand information about disasters to 

stay ahead of competitors. Also, the classification models 

that we explored can be combined with text generator 

models, such as GPT3, to inform the people on social 

media without any human supervision, increasing the 

efficiency of the communication industry. 

Lastly, since the police, firefighters, and government 

agencies have limited staff, we can combine in a first step 

to identify real disaster information and then automatically 

perform sentiment analysis to allocate the human resources 

as efficiently as possible. 

 

7.  Conclusion 

We started defining a baseline performance using 

traditional machine learning models and BoW 

embeddings, which achieves a decent performance. In the 

second stage, we explored the BERT model with 

contextual information that improved some of the metrics, 

such as ROC_AUC, but the results are similar to the 

traditional models for some others, such as accuracy. 

Another novel technique we explored is Graph 

Convolution Network (GNC). This model also 

underperforms compared to the baseline. Still, it is worth 

noting that although the GNC and BERT models can 

capture more sophisticated relationships in the text, we 

face computational limitations that explain the 

underperformance of the models. The GNC use a small 

portion of the dataset for training, and with the BERT 

models, we have to limit the size of the embeddings 

considerably and cannot fine-tune the model due to 

memory constraints. 

The explored models provide feasible solutions for disaster 

tweets identification on social networks, which see 

promising applications for emergency responses. 
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Appendix – BERT+Text CNN Structure 

 

 


