Spotify Music Recommendation

BT5153 Applied Machine Learning in Business Analytics — Group 06 Project Report

Li Rui (A0231933]) Tang Ning (A0232009U) Fu Hangi (A0231974Y) Gan Bingzheng (A0232004A)
Pei Ziang (A0105574H)

Abstract

Online streaming music industry has grown
rapidly in recent years. How to provide mean-
ingful and engaging song recommendations to
users becomes increasingly important. Recom-
mendation system has been widely adopted by
industries like e-commerce to improve user expe-
rience and grow business impact, and can benefit
the music industry in a similar way.

Thus in this project, we explored 5 different ma-
chine learning based recommendation models us-
ing user preference and song feature datasets from
Spotify. These models include: 1. content-based
filtering; 2. user based collaborative filtering; 3.
NMF model; 4. SVD model and 5. auto-encoder
model. We also explored combining these models
into an ensemble model. After evaluating with
Hit Ratio and NDCG, user based collaborative fil-
tering is identified as the best-performing model.

1. Introduction

As we know, in recent years, recommendation systems that
use machine learning algorithms to improve user experience
and business performance have been widely used, especially
in the music streaming media industry, which greatly im-
proves the user experience and viscosity of users.

Back in the 2000s, Songza kicked off online music curation
using manual curation [1] to create playlists for users. But
it was manual and simple, and therefore couldn’t take into
account the nuance of each listener’s individual music taste.

Later, Pandora improved this in a creative way by employing
a slightly more advanced approach to manually tag attributes
of songs. They asked a group of people to listen to music
and chose a bunch of descriptive words as tags for each
track. In this way, Pandora’s algorithm could simply filter
for certain tags to curate playlists of similar-sounding music.

Nowadays, global audio streaming subscription service gi-
ant Spotify, which reportedly has 180 million subscribers

and 82 million tracks [2], has invested heavily in building
recommendation features. Discover Weekly is Spotify’s
fully personalized playlist management at scale, with more
than 2.3 billion hours of total playtime [3] 5 years after its
launch. Bandits for Recommendations as Treatments, or
BaRT for short, is one of the key recommendation algo-
rithms running on Spotify that generates weekly lists of the
most relevant and engaging music for users every Monday.

Spotify uses three main functions in BaRT: Natural Lan-
guage Processing (NLP), which work by analyzing text,
Audio models, which work by analyzing the raw audio
tracks themselves., and Collaborative Filtering (CF), which
work by analyzing your behavior and others’ behavior. They
then further improved the model in April 2021, releasing
a dynamic model called the Preference Transition Model
that not only addresses the filter bubble problem, but also
enhances user interaction and engagement. These recom-
mendation models are all connected to Spotify’s much larger
ecosystem, which includes giant amounts of data storage
and uses lots of Hadoop clusters to scale recommendations
and make these engines work on giant matrices, endless
internet music articles, and huge numbers of audio files.

2. Problem Statement

With above background in mind, we set out to propose the
problem statement: how to develop a music recommen-
dation system that combines machine learning knowledge
learning, our research and understanding, and some con-
cepts from Spotify’s BaRT algorithm to improve online
streaming music users’ experience

This problem statement contains 2 main aspects:
1. Music recommendations for existing users: learn their

preferences through past behavior and recommend
songs accordingly

2. Music recommendation for new users and songs (i.e.
cold start problem):

» For New Users: By clustering songs by their features,

Spotify Music Recommendation

we plan to select songs closest to cluster centroid for
each cluster and recommend them to new users.

* For New Songs: By predicting the cluster that new
songs belong to, we plan to recommend this new song
to the users who like this corresponding cluster.

3. Data

3.1. Dataset Description

LTl

In this project, we not only selected a dataset called “spotify
from Kaggle, but also further explored and scraped a dataset
called “spotify_audio_feature” from the online API provided
by Spotify.

3.1.1. KAGGLE DATASET “SPOTIFY”

The first dataset “spotify”, can be downloaded directly from
Kaggle 4. It contains records of tracks in users’ Spotify
playlists based on their sharing with #nowplaying tag via
twitter. The dataset contains around 13 million rows of data
and the detailed information on variables is shown below:

Variable | Type | Descriptions

user_id string | Unique hash of the user’s Spo-
tify username

artist string | The name of the artist of the
track

track string | The title of the track which
user listened to

playlist string | The name of the playlist that
contains this track

Table 1. Kaggle Dataset “spotify”

3.1.2. SCRAPED DATASET “SPOTIFY_AUDTIO_FEATURE”

Besides tracks in different users’ playlists, we also explored
and found other song features, such as danceability, energy
and so on from the scraped dataset “spotify_audio_feature”
using Spotipy[5], a lightweight Python library for the Spo-
tify Web APL

There are two main steps to find information related to
songs. Firstly, we obtain specific track id by searching the
combination of artist and track name. Then, we call the API
again to get access to audio features for different tracks with
their unique track ids.

This dataset contains additional features for songs obtained
from the first dataset and is composed of 1,335 songs. The
description of the selected song features is shown below:

Variable | Type | Descriptions

track string | The title of the track which
user listened to

danceability float How suitable a track is for
dancing

energy float | A measure of intensity and
activity, energetic tracks feel
fast, loud, and noisy

key integer | The estimated overall key of
the track

loudness float The overall loudness of a
track in decibels(db)

mode integer | The modality (major or mi-
nor) of a track

speechiness float The presence of spoken words
in a track

acousticness float | Whether the track is acoustic

instrumentalness| float Whether a track contains no
vocals, rap or spoken word
tracks are “vocal”

liveness float The presence of an audience
in the recording

valence float The musical positiveness con-
veyed by a track

tempo float The overall estimated tempo
of a track in beats per minute
(BPM)

type string | The type of the song

id string | Unique id of the song

uri string | A uniform resource indicator
code for the song

track _href string | The URL for the song

analysis_url string | URL to a low-level audio anal-
ysis

duration_ms integer | The duration of the track in
milliseconds

time_signature | integer| An estimated overall time sig-

nature of a track

Table 2. Scraped Dataset “spotify_audio_feature”

Spotify Music Recommendation

3.2. EDA

To better understand the data, we performed exploratory
data analysis on both datasets.

Firstly, we would like to understand the relationship be-
tween users and tracks. So we group the tracks and user
ID respectively and see the number of the user ID, and in
another case, number of the tracks with the visualization of
two histograms.

#users has been listened by

Figure 1. The Number of Times A Track is Listened to by Users

#tracks a user has listened to

200000
175000
150000

£ 5000

100000

75000

of the track occure;

50000

5000
. “.Mun

[] 2000 4000 00 8000 10600 12000 14000 16000

Figure 2. The Number of the Tracks Each User Listened

In Figure 1, we could see the distribution of the favoured
tracks is not so skewed, which probably means each kind
of music is welcomed by a group of audience, and there are
a few tracks that are really on-trend and be in favour by a
huge group of users. From Figure 2 We can also know that
except for some extreme users, most of the users’ music
collection numbers are on average.

Furthermore, to understand the distribution more compre-
hensively, we analyzed and drew Figure 3 and Figure 4 to
show the track and user distribution by listening count, it
helps us understand more about the general skewness and
the extremeness.

Besides, to understand more about audio features’ statistics
characteristics, according to the data type of the features,
we performed a few descriptive analyses and obtained the
visualizations below for some of the audio features (from
Firgure 5 to Figure 9):

The number of occurence of the tracks number under different users

Total track count

How m‘an:wy times it has been listened to by usersm'
Figure 3. Track Distribution by How Many Time it’s Listened

The number of occurence of the total tracks number under different users

Total user count

10 0
#Tracks listened

Figure 4. User Distribution by How Many Track they’ve Listened
» The distribution of the track length fall in a certain
range of lengths

* There is significant skewness for duration and loudness
histogram distribution

* The keys of the tracks are almost evenly distributed
* Most of the time signature of the anthems are %, in

mode 0

Loudness Histgram

oftracks

Figure 5. Distribution of Track Loudness

Spotify Music Recommendation

Tempo Histgram

Figure 6. Distribution of Track Tempo

Duration Histgram

nnnnnnnn

Figure 7. Distribution of Duration

3.3. Data Pre-processing

The original Spotify playlist dataset from Kaggle is more
unstructured. To make it more convenient and reduce overall
costs for further audio feature crawling as well as model
study, the following preprocessing steps have been applied
to the dataset:

1. Drop rows which contain null values of any of user_id,
artist, track, or playlist

2. Drop rows with unrecognized value under each column

3. Drop rows in which their tracks are no longer available
in Spotify with the help of Spotify API

4. Based on our findings in EDA, only rows are kept
which meet two criteria: (I) each user has listened to
different songs within the range between 100 and 300

(IT) each song has been listened to by 500 to 1000 users.

In the original dataset, there are a large number of users
who only listened to a few songs which are not listened
by any other users.It is impossible to find similar users
to do the recommendation. So only users and songs
with high frequency are selected.

After cleaning, there are 352,665 rows with 2,206 unique
users and 1,335 distinct tracks. Then we crawled the audio

Key Piechart

Figure 8. Distribution of Key

Mode Piechart

mode = 0

Figure 9. Distribution of Mode

features of each track using Spotify API. Since the data
is precleaned by Spotify for the use of developers, only
irrelevant columns are dropped for cleaning.

3.4. Train Test Split

To evaluate and compare the performances between different
recommendation models, train test split is applied to the
Spotify playlist dataset. For all the users, 80% of the songs
they listened to are kept as a train set while the other 20%
are used as a test set. Hence, we assume that these songs in
the test set are not listened to by those users when training
our model. By comparing the recommendation to every user
and the test set of them, we could get the performance of
the model. Details of evaluation could be found in Section
5.

4. Modelling Evaluation
4.1. Modelling

There are five individual models including Content Based
Model, User Based Collaborative Filter Model, NMF Model,
SVD Model and Auto-encoder Model. Except for Content
Based Model, the other four models work together as a com-
bined model to get the final recommendation. The details of
these models will be introduced in the following Sections
(4.1.1 to 4.1.5). All five models could make recommenda-

Spotify Music Recommendation

tions separately and their performance is evaluated by Hit
Ratio and NDCG. Except for Content Based Model, the
other models only used the user-item-matrix where every
row is a user vector and every column is an item vector.

For easy comparison, every model recommends 10 songs
to every user. Since the recommendations of the combined
model are based on scores defined in four different models,
these scores are normalized with the following equation:

Score; — Scoremin
Score;, =

Scoremazr — Scoremin

Score;, is the normalized score of the ith song recom-
mended while Score; is the original score of the ith song.
Scoremqe and Score,,;, are the max score and min score
of the songs among the 10 songs recommended to this user.

After this normalization, the scores of 10 songs recom-
mended to every user by every model will be distributed
from O to 1. Then we multiply the Hit Ratio of every model
to their scores and combine the recommendation list from
these four models together to get the final result. If a song
appears in multiple recommendation lists or in the list of the
model having higher Hit Ratio, or the song itself has a high
score in a model, it tends to get a better rank in the final
recommendations.

4.1.1. CONTENT BASED FILTERING

Content based filtering is used as a start-up model. This
model works under the assumption that users will like songs
that have similar characteristics. To start with, K-means is
performed on the dataset “spotify_audio_feature” to identify
13 distinct clusters of songs based on various features like
danceability, tempo, duration etc. Then for each user in the
train set, we identified the top 2 clusters that contain the
most number of songs they have liked before, and selected
5 songs closest to the cluster center as the recommendation
candidates. These 10 songs are then evaluated against the
actual list of songs this user likes from the test set.

Apart from making recommendations, this model could be
used to solve cold start which is the most significant prob-
lem for the following models because they all rely on the
interaction between users and songs but this Content Based
Model mainly focuses on the features of songs themselves.
Content Based Model will select the song which is closest to
the centroid of every cluster (13 songs in total) and recom-
mend them to all the new users. Besides, when a new song
is released, feeding it to Content Based Model to predict
which cluster it belongs to. Then find out the users liked the
songs in this cluster and recommend this new song to these
users.

4.1.2. USER BASED COLLABORATIVE FILTERING

User Based Collaborative Filtering is utilized to look for
a certain number of users similar to the target user, take
the songs listened to by these similar users and recommend
songs which have never appeared in the targets’ playlists.

The initial step is to transpose the user-item matrix, and
it takes user_id as columns and song_id as rows to better
calculate the Pearson Correlation coefficient. The value
contains only 1 and 0, which represents whether or not
the user has listened to the song. Based on the Pearson
Correlation of users (representing similarity between users),
we find out the top three users who have similar tastes with
the target user. Then we iterate over each similar user’s
playlist, for each of the songs which does not appear in the
target’s playlist, we assign the Pearson Correlation between
this user and target user as score to this song. After all
iterations, we combine the playlist and take the sum of the
score if the song appears in playlists from multiple similar
users. For example, if the song appears in the playlist of
both similar users A and B, then we sum up the Pearson
Correlation of both users as the song’s score.

For each target user, we list the final similar song with their
scores. The first ten songs obtained from the descending
order of the list are regarded as the recommended songs of
User Based Collaborative Filtering.

4.1.3. AUTO-ENCODER MODEL

The code of Auto-encoder Model is taken from the sample
code of this course [7] with minor changes. The basic con-
cept of Auto-encoder Model is similar to NMF Model and
SVD model. All of them are used to reconstruct the sparse
user-item-matrix. This matrix is decomposed to latent space
with patterns hidden behind users’ tastes. In other words, in
the user-item-matrix, a user vector is the interaction between
this user with all the songs (1 if listened, O if not listened,
the dimension of this vector is 1135), in the latent space, this
user vector will be some number representing some hidden
tastes with lower dimension. In our NMF and SVD Model,
we set this dimension to be 8 which means we represent the
taste of a user with only 8 hidden features. These 8 hidden
features are extracted automatically from his/her interaction
with songs. For the Auto-encoder Model, the dimension of
latent space is set to be 512.

For NMF and SVD Models, multiplying the user matrix
(2206 * 8) and item matrix (8 * 1135) divided by the length
of corresponding vector lengths, we could get a matrix (2206
* 1135) with cosine similarity between every user and ev-
ery song because the cosine similarity is calculated by the
following equation:

C ,S. ":ﬁ
N TN]

Spotify Music Recommendation

Cos_Sim;; is the cosine similarity between user i and song
J- w, is the ith user vector while v_; is the jth item vector.
|| ;|| and|| v} | are the length of them.

For the Auto-encoder Model, the encode and decode process
is done in corresponding layers and the scores representing
similarities between users and songs are given in the output
layer. Then, the 10 songs with highest scores in every row
of the matrix (every user) are taken as the recommendation
of the Auto-encoder Model to those users.

Simple hyperparameter tuning is done for Auto-encoder
Model, the dimension of encode layer, decode layer and
latent space is tuned and the performance is shown below:

Hyperparameter
Encode Layer Dimension 64 128 | 256| 512 1024 | 1024
Latent Space 32 64| 128| 256| 512 1024
Decode Layer Dimension 64 128 | 256| 512 1024 | 1024
Performance
Hit Ratio 0.273 | 0300 0326 | 0.373 | 0.506 | 0.454
NDCG 0.128 | 0.148] 0.159 | 0.189 | 0.270 | 0.237

It can be seen that the performance is the best when the sizes
of encode layer, latent space and decode layer are 1024, 512
and 1024, respectively.

4.1.4. NMF MODEL

Non-Negative Matrix Factorization, also known as NMF,
the basic concept is introduced in Section 4.1.3. Af-
ter decomposing the user-item-matrix with NMF() from
sklearn.decomposition library and getting user-matrix and
item-matrix in latent space, multiplying user-matrix and
item-matrix and divided by the length of corresponding
vector (including user vector and item vector), the cosine
similarity matrix is found. Similar to the Auto-encoder
Model, the songs with highest similarity in every row are
recommended to the corresponding user.

4.1.5. SVD MODEL

Singular Value Decomposition, also known as SVD, the
basic concept is introduced in Section 4.1.3. After de-
composing the user-item-matrix with TruncatedSVD() from
sklearn.decomposition library and getting user-matrix and
item-matrix in latent space, multiplying user-matrix and
item-matrix and divided by the length of corresponding
vector (including user vector and item vector), the cosine
similarity matrix is found. Similar to the Auto-encoder
Model, the songs with highest similarity in every row are
recommended to the corresponding user.

4.2. Evaluation
4.2.1. EVALUATION METRICS

In this report, we choose Hit Ratio and normalized dis-
counted cumulative gain (NDCG) [6], which are commonly
used to evaluate the recommendation systems, to be our
evaluation metrics.

Hit Ratio: measures the percentage of the users for which
at least one of the actual songs are included in the recom-
mendation list with length k among all the users. When
the Hit Ratio is higher, more users would be the hit users
and could be recommended properly, therefore, the model
performance would be better. Below is the formula for the
Hit Ratio.

Number of hit users with k recommendations

Hit Ratio =
Number of total users

Normalized discounted cumulative gain (NDCG): For
Hit Ratio, as long as we can predict one of the actual songs
for a user, the user will be a hit user. However, it couldn’t
measure the ranking performances of the recommendations.
If the right recommendations are located at the top of the
recommendation list, the performances should be better.

Therefore, we also use NDCG to evaluate our recommenda-
tion system. It can measure not only how relevant the results
are but also how good the ordering is. The discounted cumu-
lative gain (DCG) is the sum of relevance up to a position k
in the recommendation list discounted by the rank. However,
the discounted cumulative gain couldn’t be used to compare
the systems recommending different numbers of items. This
can be solved by dividing the ideal discounted cumulative
gain (IDCG), which is the discounted cumulative gain for
the most ideal ranking, to obtain the normalized discounted
cumulative gain. To obtain the overall NDCG, we take the
average of NDCG of the users in the test set. The formulas
are shown as below:

k
_ Gj
PEGI) =2, i+ 1)

[1(K))| G

() = J
06= 3 e
_ DCG,(k)
NDCGilk) = 15660

N
overalINDCG,; (k) = %) NDCG;(k)
1

In these formulas, i represents the individual user, k is the
number of the recommendation for each user and j is the
position of the recommendation. G is the relevance of the
recommended song, which is binary with O or 1 in our case.

Spotify Music Recommendation

I(k) means the ideal list of the recommendation and N is the
total number of the users.

For both Hit Ratio and NDCG, we choose to recommend 10
songs for each user, therefore, k is 10.
4.2.2. MODEL COMPARISON EXPLANATION

The performance of models is demonstrated in the table
below:

Model Hit Ratio NDCG
Score
Content Based Filtering | 0.218 0.100
User Based Filtering 0.660 0.371
NMF 0.552 0.288
SVD 0.584 0.299
Auto-encoder 0.481 0.256
Combined 0.573 0.325

Table 3. Model Performance Comparison

It can be seen that the performance of the User-based CF
Model is the best in both Hit Ratio and NDCG.

The performance of the Auto-encoder Model is not good
although the latent space dimension is much larger than the
other two similar models, NMF and SVD, (512 to 8). The
possible reason is the limited sample volume because the
number of parameters in the Neural Network is huge.

We can also see that the performance of content-based filter-
ing is the lowest among all models. This is expected as the
model takes in explicit features like danceability and tempo
of songs and makes predictions accordingly. Latent features
that determine whether a user likes a song or not cannot
be properly understood and leveraged like in collaborative
filtering models.

The recommendation considering all the models except
Content-based Model is not as good as the best model (User-
based CF Model) but is still better than most of the indi-
vidual models. This is not surprising because the weight
of the CF Model is diluted by other models. However, we
just tested them on this one dataset. The other models may
outperform on another dataset. Hence, this combined model
is still meaningful because it could get a more stable perfor-
mance than individual models.

5. Strategy

After implementing and evaluating the 5 recommendation
models above, we proceed to propose how a music company
in the real world like Spotify can adopt and implement an
effective music recommendation system.

We introduce an iterative workflow below:

Data . 3
Collection SNy Deployment

Split user traffic
and conduct
online testing

Machine
learning based
models (e.g. CF)

User, song and
user-song
interaction data

Select winning
model and
deploy

Real-time Cﬁﬁ

Data

 Step 1 - Collect user behaviour data towards songs and
song features.

 Step 2 - Perform various machine learning based mod-
els illustrated above using data collected from step 1.

» Step 3 - Split user traffic into smaller segments ran-
domly and test the models from step 2 online. Note
that in this step, evaluation metrics should also include
click through rate and user stay time etc to accurately
measure model’s impact.

e Step 4 - From online A/B testing in step 3, the best-
performing model(s) can be selected for a full traffic
deployment.

* Last but not least, this is an iterative workflow, meaning
that after the first deployment, continuous data collec-
tion, modeling and A/B testing should be performed.

On top of the 4 steps, it is also important to enable both
historical and incremental data pipeline so that models can
always learn from a comprehensive and latest dataset for
optimal performance.

6. Limitations and Further Studies

In this section we will discuss a few limitations in this
project and can be explored for further studies :

6.1. Data limitations

There are several limitations from the perspective of the
dataset itself. The initial playlist dataset contains more
than 12 million pieces of data. Due to the capability as
well as the model performance, we only take a subset of
the original data to make sure that the subset is not sparse.
However, we also add some bias to the subset when we take
only a certain range of tracks or users. Moreover, during
our exploration, we only take the name of the song into
consideration while there exists a situation in which each

Spotify Music Recommendation

song may have different versions. For instance, there is a
remastered version of a previous song, but the audio features
between each other might be the same. With this saying, it
is also possible to take artists into account and regard the
same song with different artists as two distinct songs for
further exploration.

6.2. Auto-encoder hyperparameter tuning

Only the dimensions of encode, decode layer and latent
space are tuned. Many other hyperparameters, such as the
optimizer and activation, are not tuned. The Auto-encoder
Model may have better performance when it is tuned with
more combinations.

7. Conclusion

To conclude, we started off by introducing music recom-
mendation’s background and importance, then set out to
propose the problem statement of how to build an effective
music recommendation system to improve user experience.
By using the Spotify datasets on user preference and song
features, 5 machine learning based recommendation models
and 1 combined model are implemented and evaluated using
Hit Ratio and NDCG score. And used based collaborative
filtering is identified as the best-performing model.

Limitations around data and the auto-encoder model are
also discussed to shed some light onto the next steps. We
finally conclude the project with a proposed workflow for
online music providers like Spotify to adopt and iteratively
improve their recommendation.

The code implementation of this report can be found on
this link: https://github.com/ningtang0224/
bt5153_group_6

8. References

[1] How Does Spotify Know You So Well? How does
Spotify know you so well? (n.d.). Retrieved April 24, 2022,
from https://scribe.rip/p/spotifys-discover-weekly-how-
machine-learning-finds-your-new-music-19a41ab76efe

Febru-
from

[2] About Spotify. Spotify.
ary 2). Retrieved February 17,
https://newsroom.spotify.com/company-info

(2022,
2022,

[3] Spotify users have spent over 2.3 billion hours
streaming discover weekly playlists since 2015. Spo-
tify. (2020, July 9) Retrieved February 17, 2022, from
https://newsroom.spotify.com/2020-07-09/spotify-users-
have-spent-over-2-3-billion-hours-streaming-discover-
weekly-playlists-since-2015

[4] Larxel. (2021, November 15). Spotify playlists.
Kaggle. Retrieved February 17, 2022, from
https://www.kaggle.com/andrewmvd/spotify-playlists

[5] Home: Spotify for developers. Home — Spotify for
Developers. (n.d.). Retrieved February 17, 2022, from
https://developer.spotify.com/

[6] Ranking Evaluation Metrics for Recom-
mender Systems. Retrieved April 24, 2022, from
https://towardsdatascience.com/ranking-evaluation-
metrics-for-recommender-systems-263d0a66ef54

[7] BT5153 Applied Machine Learning for Busi-
ness Analytics - Lecture 5 AutoEncoder. from
https://bt5153msba.github.io/note/blogs05.html

https://github.com/ningtang0224/bt5153_group_6
https://github.com/ningtang0224/bt5153_group_6

