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Abstract 

Classification of hematopoietic stem cells (HSCs) are 
based on bone marrow biopsy and flow cytometry. Both 
methods have limitations which range from labor 
intensive approach to high investment and operating cost. 
However, given that classification of HSCs is crucial for 
the diagnosis of the hematological disorders (where the 
number of cases are increasing globally), this paper will 
evaluate the impact of adopting convolutional neural 
networks, transfer learning approach and visual 
transformers in classifying five classes of HSCs. The 
analysis is conducted on two data sets where one data set 
is based on171,374 microscopic cytological images taken 
from bone marrow smears from 945 patients with expert-
annotation of the type of hematological diseases whereas 
the other is based on the same images but cropped. Our 
CNN and pre-trained CNN2 models achieve a MCC of 
0.68 for non-cropped data set. This study is a set towards 
an automated evaluation of HSCs using state-of-the-art 
image classification algorithms. 

1.  Introduction  

1.1  Background  

Hematopoiesis refers to the formation of blood cellular 
component in the bone marrow which occurs during 
embryonic development and throughout adulthood to 
produce and replenish the blood system. Studying 
hematopoiesis can help scientists and clinicians to 
understand better the processes behind blood disorder like 
leukemia, MDS-RA, etc. and also hematopoietic stem 
cells (HSCs) can be used as model system for 
understanding tissue steam cells and their role in ageing 
and oncogenesis.  

Currently, to analyze the HSCs, flow cytometry is used 
for comprehensive single-cell analysis method over the 
traditional method of bone marrow biopsy where the 
analysis of HSCs is done almost relatively manually by 
cytotechnologist The flow cytometry will require cells 
obtained from blood and placed into suspension before 
staining with dyes. This is followed by three processes of 
using fluidics system to guide cell sample past the laser 
for separate measurement of every single cell, the optics 
system which will emit light to collect signal and lastly 

detection of signals to digital parameters to analyze the 
cells using a separate software.  

Despite the advantages of flow cytometry of enabling 
scientists and clinicians to evaluate blood disorders, there 
are several limitations. Some limitations include (i) 
fluidics system usually causes blockades which affect the 
analysis of HSCs, (ii) manual check on the laser 
alignment, (iii) damage of cells which affects the analysis 
of HSCs and (iv) the exorbitant cost of purchasing a flow 
cytometry and the high operating cost of the device.  

Furthermore, effective examinations are highly dependent 
on the availability and experience of cytotechnologists. 
This problem is exacerbated by the increase in bone 
marrow biopsies required due to the increase in the 
number of hematological disorders globally (e.g., the 
number of newly diagnosed leukemia cases increased 
from 354,500 in 1990 to 518,500 in 2017 (Dong, 2020)). 

1.2  Project objective  

One major development in recent years is the application 
of machine learning techniques to identify abnormal bone 
marrow cells. However, these models often rely on cell 
level features in order to make a prediction. These cell 
level features often require specialized techniques to 
extract (i.e., flow cytometry). While this is an 
improvement over the traditional approach of bone 
marrow biopsy, it would still require some lab work 
(which is often also the bottlenecks and limitations) in 
order to obtain the features.  

Therefore, in this study, we aim to improve the analysis of 
HSCs and overcome the challenges faced by both flow 
cytometry and bone marrow biopsy by using images of 
single-cell samples to train a neural network that can be 
used to identify the five classes of HSCs. The reduced 
samples could be flagged to a trained medical 
professional for further examination. We believe that 
adopting this approach will reduce the diagnosis time for 
certain bone marrow related diseases drastically, which 
can lead to earlier treatment and overall better prognosis 
for the patient. Furthermore, it will also reduce the cost of 
analyzing HSCs which helps to allow support earlier 
blood abnormalities detection.  
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1.3  Business applications  

Although cytopathologists and cytotechnologists play an 
important role in precision medicine, there is a global 
shortage of these professionals (S.J. Robboy, 2013). This 
imposes challenges on the early diagnosis of 
abnormalities in the bone marrow. This study can 
strengthen the basis for the automatic analysis of the cell 
morphologies to quantify the initial degree of malignancy; 
on top of the numerous literature papers that have similar 
findings (Mori, 2020), (Teekaraman, 2021). Furthermore, 
it also improves the diagnostic accuracy as it reduces the 
reliance on the experience of cytopathologists and shorten 
the diagnosis time since it reduces the images that the 
cytotechnologists are required to review. In addition, the 
deep neural networks can be further studied to use images 
taken directly from the microscope from the cell culture 
flasks; which eliminates the need for a dedicated smearing 
of single-cell and dedicated imaging platform (Yao, 
2019).  

Furthermore, the deep neural networks developed for the 
study can be extended to other medical diagnosis like 
breast cancer pathology images (Wang H, 2014), lung 
cancer detection (Cheng J-Z, 2016), skin cancer 
classification (Rao P, 2016), etc. via deep learning and 
transfer learning. In addition, the study may propel more 
hospitals to invest resources to create bigger and highly 
accurate classification of biomedical images; which will 
improve the automatic analysis done via deep neural 
networks in the long run. 

2.  Data  

2.1  Summary of raw data set  

The cleaned raw data set contains 171,374 identified, 
expert-annotated mainly single-celled images from bone 
marrow smears taken from 945 patients stained using the 
May-Grünwald-Giemsa/Pappenheim stain between 2011 
and 2013 (Matek, 2021). The data source where data set is 
downloaded is from a Kaggle website (Bone Marrow Cell 
Classification, 2022).  

The images were annotated into 21 classes, including 4 
classes that were artificially added (i.e., smudge cell, 
artefact, other cell and not identifiable) to avoid biasing 
the annotation for easily classifiable images. Each image 
is 250 by 250 pixels. There is no overlap between images 
implying no correlation between different images in the 
data set.  

2.2  Classes in the raw data set  

With reference to the Figure 1, the cell types for 21 
classes in the raw dataset have highly imbalanced 
distributions. Such class imbalance is common in medical 
data because of the unequal prevalence of the 

hematological diseases and the collection of the annotated 
single-cell images from patients. Refer to Appendix I for 
detailed explanation of each class.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Distribution of 21 classes in the raw dataset 

2.3  Data pre-processing  

2.3.1  AGGREGATION OF SOME CLASSES  

Given that some of the morphological classes are 
challenging to distinguish; even for trained 
cytotechnologists, there are there is a reduction of the 
number of classes from 21 to 5 since these classes 
matches the basic categories of HSCs that define the 
differentiation pathway in hematopoiesis based on our 
consultation with a medical doctor. Refer to Figure 2. 
Despite the challenges to distinguish some morphological 
classes, this paper will attempt to use 21 sets of CNN 
models to do one-vs-rest classification (refer to Section 
3.1.2 for more details).  

 Erythropoiesis refers to the process which 
generates fully mature erythrocytes and requires 
the synthesis of vast amounts of hemoglobin 
along with the ultimate loss of the cell's nucleus 
and intracellular organelles. “Erythroblast” and 
“Proerythroblast” are classified under 
Erythropoiesis.  

 Granulopoiesis refers to the process by which 
mature granulocytes differentiate within the bone 
marrow. “Segmented neutrophil”, 
“Promyelocyte”, “Blast”, “Band neutrophil”, 
“Myelocyte”, “Eosinophil”, “Metamyelocyte”, 
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“Basophil”, “Faggot cell” and “Abnormal 
eosinophil” are classified under Granulopoiesis.  

 Lymphopoiesis refers to the process by which 
mature lymphocytes differentiate within the bone 
marrow. “Lymphocyte”, “Plasma cell”, “Hairy 
cell” and “Immature lymphocyte” are classified 
under Lymphopoiesis.  

 Monopoiesis refers to the process by which 
mature monocytes are generated within the bone 
marrow. Only “Monocyte” is classified under 
Monopoiesis.  

 Others refer to the additional 4 classes (i.e., 
smudge cell, artefact, other cell and not 
identifiable) were artificially added to avoid 
biasing the images.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Distribution of 5 classes after aggregation 

2.3.2  TRAIN TEST SPLIT FOR DATA SET 

The raw data set will be randomly divided into the 
training-validation data set and testing data set in the ratio 
of 4:1. Within the training-validation data set, the samples 
would further be divided into training and validation data 
validation by the ratio of 4:1 for the purposes of 
hyperparameter tuning. 

2.3.3  CLASS IMBALANCE  

With reference to the Figure 2, the cell types for the 5 
classes would still have highly imbalanced distributions. 
To address the class imbalance in the training data set, 
down-sampling and up-sampling will be adopted to 
achieve 5,000 images per class.  The up-sampling will be 
based on image augmentation transformation (i.e., 
rotation by random continuous angle, vertical and 
horizontal flips, shifts up to 25% of the image weight and 
height and shears by 5% of the image size). Whereas, the 
down-sampling will select the first nth images up to the 
sample size required.  

For example, since Lymphopoiesis class has 4 types of 
cells, each cell type will have 1,250 images. Lymphocyte 

and plasma cells have training images more than 1,250, 
they will be down-sampled whereas the hairy cell and 
immature lymphocyte will be up-sampled.  

Refer to Table 1 for the summary of the training, 
validation and testing datasets.  

Table 1: Summary of training, validation and test dataset 

 

 

 

 

 

 

 

2.3.4  IMAGE CROPPING  

Even though the raw data set attempted to focus mainly 
on single-celled images, it is observed that there are 
substantial number of images with peripheral cells. Based 
on our consultation with a medical doctor, the 
classification of the blood cell type focuses on the 
appearance of a single cell (eg. the shape of the nucleus, 
the surface appearance of the cytoplasm, the colour of the 
nucleus, etc).  

As such, there will be an evaluation of the models based 
on 2 sets of training, validation and test dataset – one 
without image cropping and one with image cropping. 
This will enable future research to evaluate if image 
cropping is useful to improve model performance.  

In order to get a good crop of the cells, we first perform 
edge detection to identify contours of all cells in the 
image. Next, all contours less than 100 pixels in length 
are dropped as these would mainly relate to smudges in 
the cell staining process or incomplete cells. Next, we 
identify the cell of interest in the image by identifying the 
center most contour and cropping a square around that 
contour. A sample of the cropped images can be found in 
Appendix II. 

3.  Methodology  

3.1  Models 

To classify the 5 classes, we have adopted 4 models – 
convolutional neural network with the Xception model 
architecture (CNN), transfer learning combined with 
different number of layers for the CNN (“Pre-CNN1” and 
Pre-CNN2”) and vision transformer. All were trained on a 
batch size of 32 for the different sets (5C5K, 1vR etc). 

 



Application of Deep Learning Neural Networks in the Identification of Abnormal Bone Marrow Cells 
 

4 

 

3.1.1  CNN (MULTICLASS CLASSIFICATION) 

CNNs are at the core of most state-of -the-art computer 
vision solutions for a wide variety of tasks (Szegedy et al., 
2016).  For our CNN architecture, we chose an Xception 
model with depth wise separable convolutions in order to 
limit the number of training parameters as compared with 
traditional inception architectures. In this architecture, 
residual blocks from certain convolutional layers are 
passed through  as separable convolutional layers in the 
neural network to optimize learning. Empirically, there is 
evidence to suggest that such networks are easier to 
optimize as compared to an inception network of similar 
depth (He, Zhang, Ren, & Sun, 2015).  Refer to the 
Figure 3 for the summary of the model and Appendix III 
for detailed model plot.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Summary of model architecture for CNN 

3.1.2  CNN (ONE VS REST CLASSIFICATION) 

During our exploratory model training phase, we 
discovered that the CNN appears to be very good at 
binary classification problems (achieving >99% test 
accuracy on sample binary classification datasets taken 
from our main dataset). Therefore, we also explore if we 
can get better classification results if we train a CNN to 
identify each class (21 in total)1. Samples can then be 
classified by each of the 21 models and classified as the 
class whose model outputs the highest probability. For 
this model, the CNN architecture is the same as that 
described in 3.1.1, except that the output layer contains 
only 1 neuron with the “sigmoid” activation function. A 
detailed flowchart of the 1vR classification process can be 
found in Appendix IV. 

3.1.3  INCEPTTIONV3 AND CNN  

Transfer learning approach is adopted to leverage on 
existing established pre-trained image recognition model 
for feature extraction from images. For this study, the 
InceptionV3 is adopted as it is a CNN trained on 
ImageNet dataset which consists of more than 14 million 
images and is known to attain accuracy around 78%.  

As such, we use this pre-trained model to extract the 
features vectors from our training data set of 25,000 
images before using them as inputs to two different CNN 
models. The CNN model architecture is based on a subset 
of the Xception model architecture. The difference 
between “Pre-CNN1” and Pre-CNN2 models are the 
number of layers and hence level of complexity.  

Refer to Figure 4 and 5 for the summaries of the 2 
models.  

 

————— 
1 Due to computational resource constraints, each of the 21 models is 
only trained on only 1,000 samples each in the positive and negative 
class. We assemble the positive class by randomly selecting 1,000 
samples from the class that the model is supposed to identify. The 
negative class is assembled by randomly selecting 50 samples from each 
of the remaining 20 classes (for a total of 1,000 samples in the negative 
class) 
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      Figure 4: Summary of model architecture for Pre-CNN1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 : Summary of model architecture for Pre-CNN2 

3.1.4  VISION TRANSFORMER  

Transformers were already well known and utilized in 
NLP tasks, with some examples being BERT, DeBERTa. 
However, they had limited applications in images, until 
Vision Transformers (ViT) came along.While ViTs are 
not an entirely new concept, they became popular through 
a revolutionary new way in processing images. Earlier 
ViT methods tried looking at each pixel, but the 
revolutionary approach by Dosovitsky, A.et al., (2021) 
divided each image into patches. 

 Although the authors showed the remarkable 
performance of ViTs, surpassing even the long held 
SOTA CNNs, one downside of ViTs were the large 
amount of data needing to be fed before they would 

outperform. This could range in the scale of at least 14 
million images.  

Given that training large number of images was 
computationally intensive, we opted for a pre-trained 
ViT-B/32-224 (Morales, F, 2021), shown in Figure 6. 

Figure 6: Summary of model architecture for pre-trained ViT 

The pre-trained model was just fine-tuned minimally 
following Momin’s (2021) method by adding a 
BatchNormalization, followed by a small dense layer with 
GELU activation between BatchNormalizations before 
the final output of 5 Classes. GELU – which features in 
transformers such as BERT, can be seen as an 
improvement over ReLU as they characterize input by 
value instead of the sign (in ReLU) In addition, they have 
remarkedly better performance, likely due to the function 
being curved at all points, allowing for improved 
approximation (Hendrycks & Gimpel, 2020). 

4.  Results  

We have adopted (i) accuracy, (ii) weighted average 
recall and (iii) Matthews Correlation Coefficient (MCC) 
to evaluate the performance of the models.  

Accuracy is an overall measure of how much the model is 
correctly predicting the classification of a single image 
above the entire set of data. Refer to Equation 1. Even 
though accuracy is the most famous classification 
performance indicator, it will be the least important 
performance metric among the three (K Blagex, 2020) 
since it is less appropriate when the dataset is imbalanced. 

 

 

 

Equation 1: Accuracy Formula 

Whereas, weighted average recall is the weighed mean of 
recall with weights equal to the class probability. There is 
a focus on recall (refer to Equation 2) because the 
detrimental consequence of classifying the HSCs which 
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results in delays in receiving necessary medical 
treatments.  

 

 

 

Equation 2: Recall Formula 

MCC is adopted as the most important evaluation metric 
among the three because (i) it is widely used in 
biomedical as a performance metric, (ii) it is a more 
reliable statistical measure which produces a high score 
only if the prediction obtained good results in all of the 
four confusion matrix categories (true positives, false 
negative, true negative and false positive), proportional to 
both the size of the positive element and the size of 
negative elements in the dataset and (iii) it can be adopted 
for imbalanced classification and can even be used for 
classes that are very different in sizes (Chicco D, 2020), 
(Ietswaart R, 2020). Refer to Equation 3. 

 

 

 

Equation 3: MCC Formula 

4.1  Performance evaluation metrics for 5 classes and 
datasets (not cropped vs cropped)     

4.1.1  COMPARISON OF COMPUTATION EFFICIENCY  

One important fact that cannot be overlooked too would 
be the computational time which, for a larger dataset, 
would scale immensely although it provides improved 
scores & estimates. 

Table 2 shows in seconds, the time taken to run the 
various models on the training & validation dataset. 
Unless specified otherwise, they were run using Google 
Colab Pro’s Tesla P100 GPU with 16GB Ram. The 
testing evaluation took around the same time, averaging at 
approximately 75mins each.  

Table 2: Comparison Computational Efficiency 

 

 

 

 

We can see that each model, even at a smaller dataset for 
training & validation, takes 4.5 hours on average. Initial 
trials run on the full dataset were attempted but ultimately 
abandoned as each epoch would take around 4 hours.  

 

 

4.1.2  COMPARISON OF PERFORMANCE   

Overall, all 4 models attained a higher accuracy, weighted 
average recall and MCC for the test data set that is not 
cropped, as compared to cropped images. This implies 
that cropping images result in the loss of critical features 
for the classification. Refer to Table 3 for the summary of 
results by evaluation metrics. 

Table 3: Summary of results by evaluation metrics 

 

  

 

Furthermore, the CNN and Pre-CNN2 models attained 
almost similar performance for the non-cropped test data 
prediction. Both models outperform the Pre-CNN1 and 
Pre-trained ViT performed the worst. Based on our 
analysis, even though both Pre-CNN1, Pre-CNN2 and 
Pre-trained ViT models were all pre-trained on ImageNet 
dataset, the Pre-trained ViT model lacks the inductive 
bias typically present in CNNs such as translational 
symmetry that gave rise to CNNs outperforming FCNN. 
This may prevent the model from fully capturing the 
critical features necessary to differentiate the individual 
HSC class as it would require vastly more data as 
compared to the CNN model. all were pre-trained on 
ImageNet dataset. 

In additional, even though the Pre-CNN2 has 4 additional 
layers (which results in an additional of 18,784 trainable 
parameters) as compared to Pre-CNN1, it is observed that 
the MCC differ by only 0.008. This implies that 
InceptionV3 is relatively effective in extracting the 
critical features for HSCs classification; which 
corroborates with the use of InceptionV3 for similar cell 
classification (Mzurikwao, D., 2020).  

In addition, it is observed that the recall for the 
“Monopoiesis” class is the lowest for all 4 models based 
on non-cropped images. This may be due to the fact that 
the training dataset for “Monopoiesis” class has the 
highest percentage of augmented images (48%). This 
implies that the image augmentation may distorted the 
necessary key features required to differentiate the HSCs. 
Refer to Table 4 and 5 for results by classes. Refer to 
Appendix V for the confusion matrix.  

Table 4: Summary of results for non-cropped images 
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Table 5: Summary of results for cropped images 

 

 

 

 

 

4.2  Performance evaluation metrics for 21 classes  

We evaluated the performance of the one-versus-rest 
CNN classifier on a test dataset containing 884 samples 
across all 21 classes. The classifier only managed to 
achieve an accuracy score of 45.48%. In order to 
understand why this strategy performed poorly, we 
analyze the confusion matrix of the test set classification, 
as shown in Figure 7 below.  

 

 

 

 

 

 

 

 

 

 

Figure 7: Confusion matrix for the 21 classes 

From the confusion matrix we observe that some binary 
classifiers performed extremely poorly with extremely 
high false positive rates or false negative rates. For 
example, classifier 11 obtained a false positive rate of 
75.34% while classifier 7 obtained a false negative rate of 
100%. 

5.  Discussions 

Neural networks have shown to be successful in various 
image classification problems. In this study, the results 
are encouraging with a relatively high MCC of 0.68 given 
the small training data set that the models are performed 
due to the limitation on computational resources.  

We believe that limitations in the ViT model attempted 
resulted in a low performance as compared to other 
models. Given the relatively nascent stage of ViT, 
although it is becoming more widely adopted, the 
availability of pre-trained models was primarily offered in 
PyTorch and/or JAX. An adapted keras version was found 
however it was limited in the implementation to a ViT-

B/32-224 pre-trained on imagenet21k and fine-tuned on 
imagenet1k  

Further improvements could be had by further fine-tuning 
patch size, transformer layers, projection dimensions and 
training on larger amounts of data. As mentioned in 4.1.2, 
although ViTs are extremely powerful, we can see that 
when applying it on a domain that is remarkedly different 
from the domain on which it is trained, the performance 
of ViTs for a smaller data size is unable to match up with 
a pre-trained CNN.  

For the one-versus-rest classifier, we believe that part of 
the problem was the extremely imbalanced dataset. Even 
though each binary classifier models were trained on 
synthetically balanced datasets, the number of original 
samples for certain cell types (such as ABE) is so few that 
most of the augmented samples are very similar. This 
hindered the model learning, which could explain why 
certain binary classifiers had extremely high false 
negative and false positive rates.  
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Appendix I: Explanation of each type  
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Appendix II: Example of non-cropped against cropped images for 5 classes   
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Appendix III: Convolutional Neural Network Architecture 
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Appendix IV: One Versus Rest Classification Strategy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21 binary classifiers are trained to identify one specific cell type out of the 21 cell types. The basic model architecture is 
the same as the multiclass convolutional neural network with Xception architecture.  

Each training dataset contains 1,000 samples from one particular cell type as the positive class, and 50 samples from 
each of the remaining 20 cell types as the negative class. Each validation dataset contains 100 samples from one 
particular cell type as the positive class and 5 samples from each of the remaining 20 cell types as the negative class. The 
training and validation result of each classifier is shown in the table below. The testing dataset contains 778 samples 
across all 21 classes.  

To perform a sample classification, the image is fed to each of the 21 classifiers, which would output a probability that 
the sample belongs to the class that the classifier is trained to identify. The final classification would be the class of the 
classifier that outputs the highest probability.  
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Appendix IV: One Versus Rest Classification Strategy (cont’d) 

Classifier Cell Type to Identify Val loss Val Acc 
0 ABE 0.7138  0.5000  
1 ART 0.0479  0.8350  
2 BAS 0.4066  0.8300  
3 BLA 0.6396  0.6300  
4 EBO 0.3260  0.8800  
5 EOS 0.0943  0.9800  
6 FGC 0.6027  0.7750  
7 HAC 0.7521  0.5000  
8 KSC 0.0014  1.0000  
9 LYI 0.3425  0.9050  

10 LYT 0.5450  0.7500  
11 MMZ 0.5196  0.8300  
12 MON 0.6866  0.7100  
13 MYB 0.5842  0.7650  
14 NGB 0.3840  0.8150  
15 NGS 0.3369  0.9050  
16 NIF 0.5965  0.6800  
17 OTH 0.3132  0.8800  
18 PEB 0.2728  0.9500  
19 PLM 0.4294  0.8150  
20 PMO 0.4139  0.8400  
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Appendix V: Confusion matrix  

(a) Without image cropping  

CNN: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pre-CNN1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pre-CNN2: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pre-trained ViT: 
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Appendix V: Confusion matrix (cont’d) 

(b) With image cropping  
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