

BT5153 Applied Machine Learning for Business Analytics

Group Project Proposal

Concrete Surface Crack Detection

Bai Tong A0262700R

Le Meiyan A0262707A

Luo Jianwei A0262763Y

Zhang Ruixu A0262828W

Zhang Xingyu A0262692X

Abstract1

This report presents an approach for concrete
surface crack detection using Convolutional
Neural Network (CNN) models. Four different
CNN models including a baseline CNN, VGG16,
ResNet50, and Inception v3 were explored. The
results show that the Inception v3 model
outperforms the other models and achieves the
highest testing accuracy and lower testing loss in
detecting concrete surface cracks. Further, the
report investigates the importance of image
features for concrete surface crack detection and
the basis of prediction making by CNN models.

1. Background

The safety and well-being of building occupants and the
public depend on the proper maintenance of structures.
Structural inspections are required to guarantee that
buildings continue to meet government standards. These
inspections are conducted by a Professional Engineer (PE)
who recommends repairs via a visual inspection report to
the Building and Construction Authority (BCA) [1].

One of the key areas of concern in building inspections is
the detection of cracks in concrete surfaces, as they are a
major indicator of structural weakness. This project aims
to automate the process of detecting cracks in concrete
images captured by CCTV cameras, thus providing a more
efficient and accurate assessment of a building's health.
PEs will have less fieldwork to perform, the inspection
process will be faster, and the results will easily integrate
into the visual inspection report. Further, the BCA
currently requires non-residential buildings to undergo
inspections every 5 years, and residential buildings every
10 years. However, with the help of automation, the
frequency of crack detection can be significantly increased

—————
Github repository: https://github.com/AstridZh/BT5153-Group-Project

to proactively identify and address potential safety hazards
caused by structural defects.

2. Dataset introduction

The Surface Crack Detection dataset from Kaggle contains
40000 concrete surface images collected from various
Middle East Technical University Campus Buildings [2].
These images are labelled either “positive” (with crack) or
“negative” (without crack).

Figure 1: Balanced Dataset

The two classes each contains 20000 images.

Figure 2: Image Samples

https://github.com/AstridZh/BT5153-Group-Project

 Concrete Surface Crack Detection

The images in the dataset all have 227×227 pixels and are
coloured through RGB channels. They are transformed
from high-resolution images that are sized 4032×3024
pixels using the technique proposed by Zhang et al in 2016
[3]. These high-resolution images have variance with
regard to surface finish and illumination conditions. No
data augmentation such as random rotation or flipping is
applied.

3. Pre-processing

To analyse the input data, it is necessary to know the data
type and storage method. The number of files exceeds
40,000 and is separated into ‘Positive’ and ‘Negative’
folders, making uploading the data to Google Colab
unfeasible. Processing the data locally is also considered,
but due to the requirements for deep modelling and the
possibility of interruptions arising from differing laptop
settings, this is not ideal. Therefore, the code is written on
Kaggle, providing the benefit of downloading and writing
the code directly inside the system. Additionally, Kaggle
allows easy sharing among participants with accounts,
facilitating the transfer of code within the group.

After setting up the system, paths are created for the two
types of images separately. Then, a function is defined to
create a dataframe that stores the file path for individual
images and their corresponding class label.

Figure 3: Filepath and Label Dataframe

Due to the limited computation power, 1000 samples were

randomly selected to speed up modelling and testing. The

next step is to perform train-test split. The training size is

set to be 70% and the testing size to be 30%.

ImageDataGenerator from the TensorFlow Keras library is

used to generate data by producing batches of tensor image

data with augmentations. In this case, the data is rescaled

and further split on the training dataset, which is then

divided into training and validation datasets. The

flow_from_dataframe function is employed to train a

classifier capable of classifying input images into classes.

Figure 4: Train-Test Split

4. Machine learning model

4.1 Baseline CNN

The Convolutional Neural Network (CNN or ConvNet) is
a subtype of Neural Networks that is mainly used for
applications in image and speech recognition. Its built-in
convolutional layer reduces the high dimensionality of
images without losing its information [4].

In Tensorflow, the Convolutional Neural Network can be
built by defining the sequence of each layer. For the
baseline model, a stack of Convolutional Layer and Max
Pooling Layer is used twice. The input images have 120
height dimensions, 120 width dimensions, and 3 colour
channels (red, green, and blue). The Convolutional Layer
uses 32 and then 64 filters with a 3×3 kernel as a filter, and
the Max Pooling Layer searches for the maximum value
within a 2×2 matrix. A Global Average Pooling layer is
added to average all the values according to the last axis
and flatten the dimensions. Then, one more hidden layer
with a total of 100 neurons is added before the model ends
in the output layer with one neuron for binary classification.
The completed model has a total of 8,489 parameters.

Figure 5: Baseline CNN Model, Summary

To ensure simplicity in training and comparability across
different models, the following inputs are used to compile
and fit all CNN models: learning rate = 0.001, weight decay

 Concrete Surface Crack Detection

= 0.001, loss function = binary cross entropy, optimizer =
Adam, number of epochs = 20, and batch size = 1.

After compiling and fitting the model to the training data,
the progression of the model's loss and accuracy is plotted.

Figure 6: Baseline CNN Model, Training and Validation
Loss and Accuracy Over Time

By the end of the 20 epochs, the learning curves have

converged, indicating that there is no overfitting. However,

since the training loss is still decreasing, underfitting is a

potential issue.

Finally, the testing data is used to obtain the model's

confusion matrix and classification report.

Figure 7: Baseline CNN Model, Confusion Matrix

Figure 8: Baseline CNN Model, Classification Report

In order to be considered superior in comparison to the
baseline model, the pre-trained models need to produce a
higher overall testing accuracy than the baseline model.

4.2 VGG-16

VGG-16 is a subtype of Convolutional Neural Networks
(CNN) used for large-scale image recognition. It was
proposed by K. Simonyan and A. Zisserman from Oxford
University and published in a paper called "Very Deep
Convolutional Networks for Large-Scale Image
Recognition" [5]. The model has 16 layers with weights,
consisting of 13 convolutional layers, 5 Max Pooling layers,
and 3 Dense layers. The convolution layers have a 3x3
filter with stride 1 and always use the same padding and a
max pooling layer of a 2x2 filter of stride 2. This makes
VGG-16 one of the popular algorithms for image
classification and easy to use with transfer learning [6].

The pre-trained VGG-16 model in TensorFlow Keras can

be fine-tuned to classify concrete surface images. First, the

model is instantiated with pre-loaded weights trained on

ImageNet. The convolutional base is then frozen to prevent

the weights in any layer from being updated during training.

 Concrete Surface Crack Detection

Finally, a Pooling and a Dense layer are applied to the end

of the model to convert these features into a single

prediction per image [7].

Figure 9: VGG-16 Model, Summary

The model is compiled and fitted to the training data using
the same inputs as mentioned earlier. The progression of
the model's loss and accuracy is plotted, and the model is
tested using the testing data.

Figure 10: VGG-16 Model, Training and Validation Loss
and Accuracy Over Time

The training and validation accuracy curves converge by
around 4 epochs and remain flat after that, which in

isolation suggests that the model is a good fit. However,
the still-decreasing loss curves indicate that there may be
an underfit and that the model can be further trained.

Figure 11: VGG-16 Model, Confusion Matrix

Figure 12: VGG-16 Model, Classification Report

The overall accuracy improves upon the baseline CNN
model, and more importantly, the testing accuracy is even
across positive and negative data.

4.3 ResNet50

ResNet50, short for Residual Network, is a CNN

architecture introduced in 2015 by He Kaiming, Zhang

Xiangyu, Ren Shaoqing, and Sun Jian in their paper "Deep

Residual Learning for Image Recognition" [8]. ResNet50

consists of 50 layers, including 48 convolutional layers,

one MaxPool layer, and one average pool layer. It can be

applied to various computer vision tasks, such as image

classification, object localization, and object detection, and

its depth can also enhance non-computer vision tasks while

reducing computational expenses [9].

To implement the pre-trained ResNet50 model, a similar

approach to that of the VGG-16 model is followed. The

ResNet50 model is initialized with pre-trained weights

 Concrete Surface Crack Detection

from ImageNet, and a Pooling and a Dense layer are

applied at the end to transform the features into a single

prediction per image.

Figure 13: ResNet50 Model, Summary

The model is compiled and fitted to the training data using
the inputs mentioned earlier, and the loss and accuracy of
the model's progress are plotted.

Figure 14: ResNet50 Model, Training and Validation Loss
and Accuracy Over Time

The learning curves suggest that the model underfits, and
the underfitting situation is much more apparent than the

VGG-16 model. ResNet50 is therefore less optimal
especially under limited computing power.

Figure 15: ResNet50 Model, Confusion Matrix

Figure 16: ResNet50 Model, Classification Report

Since the model underfits, it is expected that the overall
testing accuracy is also lower. The model also predicts
positive labels much better than it does negative labels.
Within the context of concrete surface crack detection, this
is a minor concern because misidentifying crack-free
surfaces is not harmful. Nonetheless, the imbalanced
prediction precision is still a drawback in performance.

4.4 Inception v3

Inception v3 is a CNN architecture designed to aid in image
analysis and object detection, introduced by Szegedy et al.
in their paper "Rethinking the Inception Architecture for
Computer Vision" [10]. It is the third generation of
Google's Inception Convolutional Neural Network, which
was originally developed for the ImageNet Recognition
Challenge. Inception v3 comprises 42 layers and aims to
support deeper networks while maintaining a manageable
number of parameters. It incorporates several
modifications, including Label Smoothing, Factorized 7 x
7 convolutions, and an auxiliary classifier to propagate

 Concrete Surface Crack Detection

label information down the network, as well as batch
normalization for layers in the sidehead [11].

The implementation of the pre-trained Inception v3 model

is similar to that of the previous models. The model is

initialized with pre-trained weights from ImageNet, and a

Pooling and a Dense layer are added at the end to convert

the features into a single prediction per image.

Figure 17: Inception v3 Model, Summary

The model is then compiled and fitted to the training data
using the inputs mentioned earlier.

Figure 18: Inception v3 Model, Training and Validation
Loss and Accuracy Over Time

By the end of the 20 epochs, the learning curves have
converged and have a slope of almost 0. Therefore, there is
neither an underfit nor overfit; the Inception v3 model is a
good fit.

Figure 19: Inception v3 Model, Confusion Matrix

Figure 20: Inception v3 Model, Classification Report

The model also performs well on testing data. Although it
predicts positive labels slightly better than negative labels,
the difference is small and the accuracy on negative labels
is still higher than the three other CNN models.

4.5 Model comparison

When summarizing the loss and accuracy of all four
explored models, it can be observed from the table that the
Inception v3 model exhibits the lowest testing loss and
highest testing accuracy.

loss accuracy

baseline_cnn 0.148990 0.966667

vgg16 0.148374 0.973333

resnet50 0.525620 0.926667

inceptionv3 0.042461 0.986667

Figure 21: Model Loss and Accuracy Comparison

 Concrete Surface Crack Detection

It can be concluded that the Inception v3 model performs
the best out of the four models. Further hyperparameter
tuning can be done on the Inception v3 model to improve
its performance and/or reduce its runtime.

4.6 Hyperparameter tuning

As Inception v3 is a pre-trained model, the
hyperparameters available for training are the inputs during
the compiling and fitting stages. Specifically, the
hyperparameters chosen for tuning include the learning
rate, weight decay, number of epochs, and batch size.

To streamline hyperparameter tuning, the Optuna package
is employed, and the objective is to minimize the validation
loss. As a result, the optimal hyperparameters for the model
are determined as learning rate = 0.01, weight decay =
0.002, number of epochs = 30, and batch size = 80, with
the optimal validation loss being 2.608e-05.

Additionally, Optuna provides various visualization
features to assist with the analysis of optimization results.

Figure 22: Optimization History

The optimization algorithm reached the best objective
value by trial 25, suggesting that the algorithm’s runtime
can probably be improved by reducing the number of trials.

Figure 23: Parameter Importance

The hyperparameter importance plot reveals that the
number of epochs has the greatest influence on validation
loss, while the learning rate has the least impact.

The tuned Inception v3 model has a testing loss of 0.073
and a testing accuracy of 0.990.

loss accuracy

baseline_cnn 0.148990 0.966667

vgg16 0.148374 0.973333

resnet50 0.525620 0.926667

inceptionv3 0.042461 0.986667

tuned_inceptionv3 0.073157 0.990000

Figure 24: Model Loss and Accuracy Comparison

The tunned model simultaneously has higher testing
accuracy and higher testing loss than the original model. A
possible explanation for these two contradicting findings is
that the cross-entropy loss function penalizes bad
predictions much more strongly than it rewards good
predictions. Thus, if there are images with very bad
predictions that keep getting worse, the loss can increase
while accuracy remains the same. Still, the improved
testing accuracy is indicative of successful hyperparameter
tuning.

5. Insights

In order to gain insights into the decision-making process
of the model and ensure that the predictions are based on
important features, this report utilizes LIME to provide
explanations for specific predictions.

LIME, short for local interpretable model-agnostic
explanations, is a method that approximates any black box
machine learning model with a local, interpretable model
to explain each individual prediction [12]. It helps to verify
the model's correctness and to check for any biases in the
training data that may influence the model's predictions.

In an image classification task, LIME generates
explanations by masking out different parts of the image
and observing how the classification score changes. By
doing this repeatedly and fitting a simple model to the
resulting scores, LIME is able to identify the parts of the
image that are most important for the classification
decision.

To illustrate, consider the sample image that shows a crack
on a concrete surface, as shown in the figure below.

 Concrete Surface Crack Detection

Figure 25: Image Sample from Positive Class

The portions of the image visible within the yellow

boundary are where the model bases its predictions on.

Figure 26: LIME Interpretation with Mask Boundary

The area coloured in green are the super-pixels that
increase the probability of the image belonging to the
positive class.

Figure 27: LIME Interpretation with Probability Colour

LIME confirms that the model makes decisions using the
features of the crack itself, the dark edges of which creates
a contrast against the lighter concrete surface background.
There is no bias or mistake in the model’s predictions.

6. Conclusion

Concrete surface cracks pose a significant threat to the
safety of residents by indicating structural instability.
However, traditional inspection methods require a
considerable amount of human labor and cannot be
conducted regularly.

This report employs four different CNN models - Baseline
CNN, VGG-16, ResNet50, and Inception v3 - to identify
cracks in photographs of concrete surfaces collected by
CCTV. The models undergo training on the training dataset,
validation on the validation dataset, and final evaluation on
the testing dataset. The evaluation results reveal that the
Inception v3 model has not only the lowest testing loss but
also the highest testing accuracy.

After the model assessment, the Inception v3 model
undergoes additional hyperparameter adjustment, utilizing
the Optuna package. The optimum hyperparameters,
including learning rate, weight decay, number of epochs,
and batch size, are determined, minimizing the resulting
validation loss. The tuned Inception v3 model achieves an
accuracy of 0.99 on the testing dataset, indicating its robust
prediction capability.

To gain further insight into the prediction-making process
of the Inception v3 model, the LIME package is employed.
The prediction example demonstrates that the model's logic
aligns with human intuition, with the most important
features or super pixels being those where the cracks are
located.

Overall, this report demonstrates the effectiveness and
potential of deep learning models in addressing real-world
problems. Utilizing deep learning models such as Inception
v3 can aid in ensuring the safety of residents by identifying
potential structural instability in a more accessible and
timely manner.

References

[1] Periodic Structural Inspection (PSI). (2023, April 12).
BCA Corp. https://www1.bca.gov.sg/regulatory-
info/building-control/periodic-structural-inspection

[2] Surface Crack Detection. (n.d.). Surface Crack
Detection | Kaggle. https:///datasets/arunrk7/surface-
crack-detection

[3] L. Zhang, F. Yang, Y. Daniel Zhang and Y. J. Zhu,
"Road crack detection using deep convolutional neural
network," 2016 IEEE International Conference on
Image Processing (ICIP), Phoenix, AZ, USA, 2016, pp.
3708-3712, doi: 10.1109/ICIP.2016.7533052.

 Concrete Surface Crack Detection

[4] Lang, N. (2022, October 24). Using Convolutional
Neural Network for Image Classification. Medium.
https://towardsdatascience.com/using-convolutional-
neural-network-for-image-classification-5997bfd0ede4

[5] Understanding VGG16: Concepts, Architecture, and
Performance. (n.d.). Datagen.
https://datagen.tech/guides/computer-vision/vgg16/

[6] Learning, G. (2021, September 23). Everything you
need to know about VGG16. Medium.
https://medium.com/@mygreatlearning/everything-you-
need-to-know-about-vgg16-7315defb5918

[7] A. (2019, May 29). How to use VGG model in
TensorFlow Keras - Knowledge Transfer. Knowledge
Transfer. https://androidkt.com/how-to-use-vgg-model-
in-tensorflow-keras/

[8] ResNet-50: The Basics and a Quick Tutorial. (n.d.).
Datagen. https://datagen.tech/guides/computer-
vision/resnet-50/

[9] Understanding ResNet50 architecture. (2020, March
30). OpenGenus IQ: Computing Expertise & Legacy.
https://iq.opengenus.org/resnet50-architecture/

[10] Papers with Code - Inception-v3 Explained. (n.d.).
Inception-v3 Explained | Papers With Code.
https://paperswithcode.com/method/inception-v3

[11] Inception v3. (n.d.). Inception V3.
https://huggingface.co/docs/timm/models/inception-v3

[12] LIME: Local Interpretable Model-Agnostic
Explanations. (n.d.). C3 AI. https://c3.ai/glossary/data-
science/lime-local-interpretable-model-agnostic-
explanations/

