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Abstract1 

This report presents an approach for concrete 
surface crack detection using Convolutional 
Neural Network (CNN) models. Four different 
CNN models including a baseline CNN, VGG16, 
ResNet50, and Inception v3 were explored. The 
results show that the Inception v3 model 
outperforms the other models and achieves the 
highest testing accuracy and lower testing loss in 
detecting concrete surface cracks. Further, the 
report investigates the importance of image 
features for concrete surface crack detection and 
the basis of prediction making by CNN models. 

1.  Background 

The safety and well-being of building occupants and the 
public depend on the proper maintenance of structures. 
Structural inspections are required to guarantee that 
buildings continue to meet government standards. These 
inspections are conducted by a Professional Engineer (PE) 
who recommends repairs via a visual inspection report to 
the Building and Construction Authority (BCA) [1].  

One of the key areas of concern in building inspections is 
the detection of cracks in concrete surfaces, as they are a 
major indicator of structural weakness. This project aims 
to automate the process of detecting cracks in concrete 
images captured by CCTV cameras, thus providing a more 
efficient and accurate assessment of a building's health. 
PEs will have less fieldwork to perform, the inspection 
process will be faster, and the results will easily integrate 
into the visual inspection report. Further, the BCA 
currently requires non-residential buildings to undergo 
inspections every 5 years, and residential buildings every 
10 years. However, with the help of automation, the 
frequency of crack detection can be significantly increased 

————— 
Github repository: https://github.com/AstridZh/BT5153-Group-Project  

to proactively identify and address potential safety hazards 
caused by structural defects. 

2.  Dataset introduction 

The Surface Crack Detection dataset from Kaggle contains 
40000 concrete surface images collected from various 
Middle East Technical University Campus Buildings [2]. 
These images are labelled either “positive” (with crack) or 
“negative” (without crack). 

 

Figure 1: Balanced Dataset 

The two classes each contains 20000 images. 

 

Figure 2: Image Samples 
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The images in the dataset all have 227×227 pixels and are 
coloured through RGB channels. They are transformed 
from high-resolution images that are sized 4032×3024 
pixels using the technique proposed by Zhang et al in 2016 
[3]. These high-resolution images have variance with 
regard to surface finish and illumination conditions. No 
data augmentation such as random rotation or flipping is 
applied. 

3.  Pre-processing 

To analyse the input data, it is necessary to know the data 
type and storage method. The number of files exceeds 
40,000 and is separated into ‘Positive’ and ‘Negative’ 
folders, making uploading the data to Google Colab 
unfeasible. Processing the data locally is also considered, 
but due to the requirements for deep modelling and the 
possibility of interruptions arising from differing laptop 
settings, this is not ideal. Therefore, the code is written on 
Kaggle, providing the benefit of downloading and writing 
the code directly inside the system. Additionally, Kaggle 
allows easy sharing among participants with accounts, 
facilitating the transfer of code within the group. 

After setting up the system, paths are created for the two 
types of images separately. Then, a function is defined to 
create a dataframe that stores the file path for individual 
images and their corresponding class label.   

 

Figure 3: Filepath and Label Dataframe 

Due to the limited computation power, 1000 samples were 

randomly selected to speed up modelling and testing. The 

next step is to perform train-test split. The training size is 

set to be 70% and the testing size to be 30%. 

ImageDataGenerator from the TensorFlow Keras library is 

used to generate data by producing batches of tensor image 

data with augmentations. In this case, the data is rescaled 

and further split on the training dataset, which is then 

divided into training and validation datasets. The 

flow_from_dataframe function is employed to train a 

classifier capable of classifying input images into classes. 

 

Figure 4: Train-Test Split 

4.  Machine learning model 

4.1  Baseline CNN 

The Convolutional Neural Network (CNN or ConvNet) is 
a subtype of Neural Networks that is mainly used for 
applications in image and speech recognition. Its built-in 
convolutional layer reduces the high dimensionality of 
images without losing its information [4]. 

In Tensorflow, the Convolutional Neural Network can be 
built by defining the sequence of each layer. For the 
baseline model, a stack of Convolutional Layer and Max 
Pooling Layer is used twice. The input images have 120 
height dimensions, 120 width dimensions, and 3 colour 
channels (red, green, and blue). The Convolutional Layer 
uses 32 and then 64 filters with a 3×3 kernel as a filter, and 
the Max Pooling Layer searches for the maximum value 
within a 2×2 matrix. A Global Average Pooling layer is 
added to average all the values according to the last axis 
and flatten the dimensions. Then, one more hidden layer 
with a total of 100 neurons is added before the model ends 
in the output layer with one neuron for binary classification. 
The completed model has a total of 8,489 parameters. 

 

Figure 5: Baseline CNN Model, Summary 

To ensure simplicity in training and comparability across 
different models, the following inputs are used to compile 
and fit all CNN models: learning rate = 0.001, weight decay 
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= 0.001, loss function = binary cross entropy, optimizer = 
Adam, number of epochs = 20, and batch size = 1. 

After compiling and fitting the model to the training data, 
the progression of the model's loss and accuracy is plotted. 

 

 

Figure 6: Baseline CNN Model, Training and Validation 
Loss and Accuracy Over Time 

By the end of the 20 epochs, the learning curves have 

converged, indicating that there is no overfitting. However, 

since the training loss is still decreasing, underfitting is a 

potential issue. 

Finally, the testing data is used to obtain the model's 

confusion matrix and classification report. 

 

Figure 7: Baseline CNN Model, Confusion Matrix 

 

Figure 8: Baseline CNN Model, Classification Report 

In order to be considered superior in comparison to the 
baseline model, the pre-trained models need to produce a 
higher overall testing accuracy than the baseline model. 

4.2  VGG-16 

VGG-16 is a subtype of Convolutional Neural Networks 
(CNN) used for large-scale image recognition. It was 
proposed by K. Simonyan and A. Zisserman from Oxford 
University and published in a paper called "Very Deep 
Convolutional Networks for Large-Scale Image 
Recognition" [5]. The model has 16 layers with weights, 
consisting of 13 convolutional layers, 5 Max Pooling layers, 
and 3 Dense layers. The convolution layers have a 3x3 
filter with stride 1 and always use the same padding and a 
max pooling layer of a 2x2 filter of stride 2. This makes 
VGG-16 one of the popular algorithms for image 
classification and easy to use with transfer learning [6]. 

The pre-trained VGG-16 model in TensorFlow Keras can 

be fine-tuned to classify concrete surface images. First, the 

model is instantiated with pre-loaded weights trained on 

ImageNet. The convolutional base is then frozen to prevent 

the weights in any layer from being updated during training. 
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Finally, a Pooling and a Dense layer are applied to the end 

of the model to convert these features into a single 

prediction per image [7]. 

 

Figure 9: VGG-16 Model, Summary 

The model is compiled and fitted to the training data using 
the same inputs as mentioned earlier. The progression of 
the model's loss and accuracy is plotted, and the model is 
tested using the testing data. 

 

 

Figure 10: VGG-16 Model, Training and Validation Loss 
and Accuracy Over Time 

The training and validation accuracy curves converge by 
around 4 epochs and remain flat after that, which in 

isolation suggests that the model is a good fit. However, 
the still-decreasing loss curves indicate that there may be 
an underfit and that the model can be further trained. 

 

Figure 11: VGG-16 Model, Confusion Matrix 

 

Figure 12: VGG-16 Model, Classification Report 

The overall accuracy improves upon the baseline CNN 
model, and more importantly, the testing accuracy is even 
across positive and negative data. 

4.3  ResNet50 

ResNet50, short for Residual Network, is a CNN 

architecture introduced in 2015 by He Kaiming, Zhang 

Xiangyu, Ren Shaoqing, and Sun Jian in their paper "Deep 

Residual Learning for Image Recognition" [8]. ResNet50 

consists of 50 layers, including 48 convolutional layers, 

one MaxPool layer, and one average pool layer. It can be 

applied to various computer vision tasks, such as image 

classification, object localization, and object detection, and 

its depth can also enhance non-computer vision tasks while 

reducing computational expenses [9]. 

To implement the pre-trained ResNet50 model, a similar 

approach to that of the VGG-16 model is followed. The 

ResNet50 model is initialized with pre-trained weights 
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from ImageNet, and a Pooling and a Dense layer are 

applied at the end to transform the features into a single 

prediction per image. 

 

Figure 13: ResNet50 Model, Summary 

The model is compiled and fitted to the training data using 
the inputs mentioned earlier, and the loss and accuracy of 
the model's progress are plotted.  

 

 

Figure 14: ResNet50 Model, Training and Validation Loss 
and Accuracy Over Time 

The learning curves suggest that the model underfits, and 
the underfitting situation is much more apparent than the 

VGG-16 model. ResNet50 is therefore less optimal 
especially under limited computing power. 

 

Figure 15: ResNet50 Model, Confusion Matrix 

 

Figure 16: ResNet50 Model, Classification Report 

Since the model underfits, it is expected that the overall 
testing accuracy is also lower. The model also predicts 
positive labels much better than it does negative labels. 
Within the context of concrete surface crack detection, this 
is a minor concern because misidentifying crack-free 
surfaces is not harmful. Nonetheless, the imbalanced 
prediction precision is still a drawback in performance. 

4.4  Inception v3 

Inception v3 is a CNN architecture designed to aid in image 
analysis and object detection, introduced by Szegedy et al. 
in their paper "Rethinking the Inception Architecture for 
Computer Vision" [10]. It is the third generation of 
Google's Inception Convolutional Neural Network, which 
was originally developed for the ImageNet Recognition 
Challenge. Inception v3 comprises 42 layers and aims to 
support deeper networks while maintaining a manageable 
number of parameters. It incorporates several 
modifications, including Label Smoothing, Factorized 7 x 
7 convolutions, and an auxiliary classifier to propagate 
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label information down the network, as well as batch 
normalization for layers in the sidehead [11]. 

The implementation of the pre-trained Inception v3 model 

is similar to that of the previous models. The model is 

initialized with pre-trained weights from ImageNet, and a 

Pooling and a Dense layer are added at the end to convert 

the features into a single prediction per image.  

 

Figure 17: Inception v3 Model, Summary 

The model is then compiled and fitted to the training data 
using the inputs mentioned earlier. 

 

 

Figure 18: Inception v3 Model, Training and Validation 
Loss and Accuracy Over Time 

By the end of the 20 epochs, the learning curves have 
converged and have a slope of almost 0. Therefore, there is 
neither an underfit nor overfit; the Inception v3 model is a 
good fit. 

 

Figure 19: Inception v3 Model, Confusion Matrix 

 

Figure 20: Inception v3 Model, Classification Report 

The model also performs well on testing data. Although it 
predicts positive labels slightly better than negative labels, 
the difference is small and the accuracy on negative labels 
is still higher than the three other CNN models. 

4.5  Model comparison 

When summarizing the loss and accuracy of all four 
explored models, it can be observed from the table that the 
Inception v3 model exhibits the lowest testing loss and 
highest testing accuracy. 
 

loss accuracy 

baseline_cnn 0.148990 0.966667 

vgg16 0.148374 0.973333 

resnet50 0.525620 0.926667 

inceptionv3 0.042461 0.986667 

Figure 21: Model Loss and Accuracy Comparison 
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It can be concluded that the Inception v3 model performs 
the best out of the four models. Further hyperparameter 
tuning can be done on the Inception v3 model to improve 
its performance and/or reduce its runtime. 

4.6  Hyperparameter tuning 

As Inception v3 is a pre-trained model, the 
hyperparameters available for training are the inputs during 
the compiling and fitting stages. Specifically, the 
hyperparameters chosen for tuning include the learning 
rate, weight decay, number of epochs, and batch size. 

To streamline hyperparameter tuning, the Optuna package 
is employed, and the objective is to minimize the validation 
loss. As a result, the optimal hyperparameters for the model 
are determined as learning rate = 0.01, weight decay = 
0.002, number of epochs = 30, and batch size = 80, with 
the optimal validation loss being 2.608e-05. 

Additionally, Optuna provides various visualization 
features to assist with the analysis of optimization results. 

 

Figure 22: Optimization History 

The optimization algorithm reached the best objective 
value by trial 25, suggesting that the algorithm’s runtime 
can probably be improved by reducing the number of trials. 

 

Figure 23: Parameter Importance 

The hyperparameter importance plot reveals that the 
number of epochs has the greatest influence on validation 
loss, while the learning rate has the least impact. 

The tuned Inception v3 model has a testing loss of 0.073 
and a testing accuracy of 0.990. 
 

loss accuracy 

baseline_cnn 0.148990 0.966667 

vgg16 0.148374 0.973333 

resnet50 0.525620 0.926667 

inceptionv3 0.042461 0.986667 

tuned_inceptionv3  0.073157 0.990000 

Figure 24: Model Loss and Accuracy Comparison 

The tunned model simultaneously has higher testing 
accuracy and higher testing loss than the original model. A 
possible explanation for these two contradicting findings is 
that the cross-entropy loss function penalizes bad 
predictions much more strongly than it rewards good 
predictions. Thus, if there are images with very bad 
predictions that keep getting worse, the loss can increase 
while accuracy remains the same. Still, the improved 
testing accuracy is indicative of successful hyperparameter 
tuning. 

5.  Insights 

In order to gain insights into the decision-making process 
of the model and ensure that the predictions are based on 
important features, this report utilizes LIME to provide 
explanations for specific predictions. 

LIME, short for local interpretable model-agnostic 
explanations, is a method that approximates any black box 
machine learning model with a local, interpretable model 
to explain each individual prediction [12]. It helps to verify 
the model's correctness and to check for any biases in the 
training data that may influence the model's predictions. 

In an image classification task, LIME generates 
explanations by masking out different parts of the image 
and observing how the classification score changes. By 
doing this repeatedly and fitting a simple model to the 
resulting scores, LIME is able to identify the parts of the 
image that are most important for the classification 
decision. 

To illustrate, consider the sample image that shows a crack 
on a concrete surface, as shown in the figure below. 
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Figure 25: Image Sample from Positive Class 

The portions of the image visible within the yellow 

boundary are where the model bases its predictions on. 

  

Figure 26: LIME Interpretation with Mask Boundary 

The area coloured in green are the super-pixels that 
increase the probability of the image belonging to the 
positive class. 

 

Figure 27: LIME Interpretation with Probability Colour 

LIME confirms that the model makes decisions using the 
features of the crack itself, the dark edges of which creates 
a contrast against the lighter concrete surface background. 
There is no bias or mistake in the model’s predictions. 

6.  Conclusion 

Concrete surface cracks pose a significant threat to the 
safety of residents by indicating structural instability. 
However, traditional inspection methods require a 
considerable amount of human labor and cannot be 
conducted regularly. 

This report employs four different CNN models - Baseline 
CNN, VGG-16, ResNet50, and Inception v3 - to identify 
cracks in photographs of concrete surfaces collected by 
CCTV. The models undergo training on the training dataset, 
validation on the validation dataset, and final evaluation on 
the testing dataset. The evaluation results reveal that the 
Inception v3 model has not only the lowest testing loss but 
also the highest testing accuracy. 

After the model assessment, the Inception v3 model 
undergoes additional hyperparameter adjustment, utilizing 
the Optuna package. The optimum hyperparameters, 
including learning rate, weight decay, number of epochs, 
and batch size, are determined, minimizing the resulting 
validation loss. The tuned Inception v3 model achieves an 
accuracy of 0.99 on the testing dataset, indicating its robust 
prediction capability. 

To gain further insight into the prediction-making process 
of the Inception v3 model, the LIME package is employed. 
The prediction example demonstrates that the model's logic 
aligns with human intuition, with the most important 
features or super pixels being those where the cracks are 
located. 

Overall, this report demonstrates the effectiveness and 
potential of deep learning models in addressing real-world 
problems. Utilizing deep learning models such as Inception 
v3 can aid in ensuring the safety of residents by identifying 
potential structural instability in a more accessible and 
timely manner. 
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