
Boosting Fan Experience with F1 Car Image Analysis

Group 02: Muthukumaran Samiayyan (A0027474A), Samin Batra (A0262665X), Varun Sharma (A0262674X),
Prasanna Govindarajan (A0262732H), Nguyen Minh Hieu (A0262807B)

GitHub Link: https://github.com/appliedmlGRP2/F1CarClassificationDL

Abstract
This project aims to enhance the Formula 1 fan

experience by developing a deep learning image
classification solution to identify teams during
live races. The solution includes collecting and
labeling car images, training and evaluating
CNN-based neural networks, and deploying the
highest accuracy model to provide real-time
team and driver information to audiences.

1. Introduction

Formula 1 is an immensely popular and highly
competitive sport featuring advanced high-performance
cars designed by 10 competing teams. These
technologically sophisticated machines can achieve
incredible speeds and have captivated fans around the
world, reigniting their passion for the sport. However, for
newcomers to Formula 1, the learning curve can be
overwhelming. With various aspects of the sport to
understand, new fans may have difficulty distinguishing
between the cars and comprehending the importance of
teams and their strategies.

To address this challenge and improve fan engagement,
this project seeks to develop an image classification
solution that can identify F1 teams in real-time during live
races. By leveraging deep learning techniques and
integrating the solution into web applications, fans will be
able to access historical and real-time race details of the
cars and teams they are interested in.

This will lead to a more immersive and enjoyable
experience, enabling newcomers to better understand the
intricacies of the sport and feel more connected to the
teams and drivers they follow. Ultimately, this technology
has the potential to transform the way fans engage with
Formula 1 and expand the sport's global reach.

2. Literature Review

As part of our research on the related work in the domain
of our project topic, we explore a research paper [1] that
demonstrates the application of transfer learning and

ensemble techniques in race car detection and
classification.

In this research paper, the authors present a
comprehensive solution for classifying NASCAR race
cars in real-time using a combination of pre-trained deep
learning models and ensemble learning techniques. The
primary goal is to identify and categorize race cars based
on their car number in images taken during races. The
authors divide their approach into several stages, starting
with the use of the MobileNetSSD model for detecting
cars and creating bounding boxes around them. This step
helps filter out irrelevant images and isolates the target
objects (race cars) for further analysis.

Figure 1: Example of object detection process for race cars

Next, the researchers repurpose pre-trained models,
specifically VGG16, VGG19, InceptionV3, and
InceptionResNetV2, for their specific use case. They
employ transfer learning to leverage the knowledge
gained from large datasets during the initial training of
these models. By fine-tuning the models and training
them on both color and grayscale images of race cars, the
authors reduce training time and maintain accuracy even
with a smaller dataset. The use of grayscale images helps
make the models more resilient to changes in car designs,
as they must focus more on the shape of features like the
car number.

Figure 2: Illustration of pre-trained models fine-tuning for image classification

1

https://github.com/appliedmlGRP2/F1CarClassificationDL


Boosting Fan Experience with F1 Car Image Analysis

Ensemble learning is then used to improve the predictive
performance of the models. The researchers employ a
simple form of stacking, averaging the scores from each
of the eight models (four pre-trained models for both
color and grayscale images) to generate the final
ensemble prediction. They find that the accuracy of the
ensemble model is 81%, and when all eight models agree
(which occurs 60% of the time), the accuracy reaches
96%. This allows them to prioritize quality over quantity,
discarding images with less agreement among the models
and focusing on those with higher accuracy.

Figure 3: Illustration of ensemble method using multiple pre-trained models

The research paper demonstrates the power of AI and
machine learning in solving complex image classification
problems, specifically in the context of NASCAR races.
By using transfer learning, fine-tuning, and ensemble
learning, the authors create an accurate and efficient
system that can be implemented for future races.
Furthermore, the study highlights the potential benefits of
using ensemble techniques to improve the performance of
deep learning models and showcases the practicality of
applying these methods to real-world scenarios.

Relating to the current topic of interest, this research
paper serves as a valuable reference for leveraging
pre-trained deep learning models and ensemble learning
techniques in similar image classification tasks. The
methodology and insights presented in the paper can be
adapted and applied to other domains, thereby expanding
the scope of AI and machine learning applications.

3. Data Collection

In the data collection phase of our project, we obtained a
F1 car image dataset from Kaggle [2] that featured eight
distinct car classes (teams) within Formula 1 racing. Each
class contained a varying number of images, as detailed
below:

● AlphaTauri: 123 images
● Ferrari: 374 images
● McLaren: 372 images
● Mercedes: 324 images
● Racing Point: 290 images

● Red Bull: 340 images
● Renault: 323 images
● Williams: 340 images

Upon closer examination, we find that some images were
misclassified, while others did not actually depict the cars
(e.g., podium images or Formula 1 memorabilia). To
address these issues, we carefully curated the dataset by
removing irrelevant images. The resulting cleaned dataset
is then utilized for subsequent stages of processing.

4. Methodology

4.1 Data Augmentation & Preprocessing

For our project, a diverse dataset with multiple variations
of images is essential for the model to generalize well and
recognize objects in different orientations, scales, and
brightness levels. If the dataset contains only a single
image of the car in the same position, the algorithm will
struggle to recognize the car from the images when the
car is slightly rotated, positioned differently, or with
varying brightness level.

To address this issue, image augmentation transformations
are used to augment the original images and generate
more diverse training examples. By applying a series of
transformations, such as horizontal flips, rotations,
scaling, brightness adjustments, and Gaussian blur we are
able to create a large diversified image dataset from the
original dataset. These transformations ensure that the
model is exposed to a wide variety of images during
training, helping it to learn robust features and improve its
ability to recognize race cars in different conditions and
scenarios.

Therefore, as a next step, data augmentation is applied to
increase the dataset's size and improve model
performance. The augmentation process involves
applying a series of transformations as detailed below to
the original images. The following sequence is defined for
data augmentation:

1. Horizontal flips with a 50% probability i.e.
to induce randomness, the image would not
flip for 50% of the cases

2. Rotation of images by -45 to 45 degrees
3. Scaling of images by 50% to 150%
4. Changing the brightness by 50% to 150%
5. Applying Gaussian blur with sigma between

0 and 2

The number of augmentations per image is calculated to
reach the desired count of 1,200 images per class.

2



Boosting Fan Experience with F1 Car Image Analysis

In the below images, we can see the transformations
applied on ‘Ferrari’ as well as ‘Red Bull’ input 3 times.

Figure 4: Examples of data augmentation for images

Figure 5: Examples of data augmentation for images

In terms of preprocessing, we apply two transformations
to the images:

1. Resizing the images to 224x224 pixels
2. Converting the images to PyTorch tensors

As a final step, the truncated images are removed and all
images are converted to the RGB format or the models to
be trained upon.

4.2 Train-Test Split

The augmented dataset is of a larger size (approximately
1200 images per class) is split into training and validation.

The splitting ratio is 80% for the training set and 20% for
the validation set. The models are then trained using this
training dataset with a batch size of 32 for training. The
validation dataset is then used to validate the model
utilizing accuracy as a metric for the eight classes.

4.3 Baseline Model

We first train a simple convolutional neural network
(SimpleCNN) for image classification that serves
as our baseline model. By using this baseline
model, we establish a performance benchmark that
we can compare with more complex models. Here
is the network architecture:

1. Input Layer: an input layer with 3 input channels
(RGB), to be used as input to the first hidden
layer

2. Hidden Layers:

● A convolutional layer with 64 output channels,
kernel size of 3x3, stride of 1, and padding of 1

● ReLU activation function
● Max Pooling layer with kernel size of 2x2 and

stride of 2
● A convolutional layer with 64 input channels,

128 output channels, kernel size of 3x3, stride of
1 and padding of 1

● ReLU activation function
● Max Pooling layer with kernel size of 2x2 and

stride of 2
● Dropout layer with a dropout rate of 0.5
● Fully connected linear layer with 401,408 input

features and 512 output features

3. Output Layer: a fully connected linear layer with
512 input features and 8 output features

Here are some other hyperparameters that we set to
initialize model training:

1. Loss function: Cross-Entropy Loss
2. Optimizer: Adam
3. Learning rate: 0.001
4. Number of epochs: 10

4.4 Pre-trained Models

4.4.1 RESNET-18

The first pre-trained model that we explore is ResNet-18.
ResNet stands for residual networks, which were

3



Boosting Fan Experience with F1 Car Image Analysis

first introduced in 2015 by Kaiming He, Xiangyu
Zhang, Shaoqing Ren and Jian Sun in the paper
‘Deep Residual Learning for Image Recognition’
[3]. ResNet-18 is a residual network with 18 layers,
including convolutional layers, batch
normalization layers, ReLU activation layers and a
fully connected linear output layer. ResNet-18 has
been trained on ImageNet containing millions of
images and thousands of classes. Moreover, the
model utilizes residual connections to address the
vanishing gradient problem, allowing it to learn
effectively with 18 layers without performance
degradation. Hence, ResNet-18 is preferred for
tasks that require both deeper model architecture
and better accuracy, without imposing too much
computing power.

4.4.2 VGG-16
The second pre-trained model used is VGG-16. The

model was first introduced in 2014 by Karen
Simonyan and Andrew Zisserman in the paper
‘Very Deep Convolutional Networks for
Large-Scale Image Recognition’ [4].VGG-16 is a
convolutional neural network with 16 layers,
including 13 convolutional layers and 3 fully
connected layers. VGG-16 has also been trained
on the ImageNet dataset, making it a good
candidate for transfer learning since we can
leverage the knowledge the model already
gained to apply to our use case. While VGG-16
only has fewer layers than ResNet-18, it is more
computationally expensive because it uses 3
fully connected layers at the end of the network,
and it also does not utilize any shortcuts (such as
residual blocks). Thus, VGG-16 can be a good
option for tasks where computational resources
are not a significant constraint, and larger
receptive fields are necessary to achieve
desirable performance.

4.4.3 MOBILENET_V2

The last pre-trained model that we worked on is
MobileNet_V2. The model was introduced in 2018
by Mark Sandler, Andrew Howard, Menglong
Zhu, Andrey Zhmoginov, Liang-Chieh Chen in the
paper ‘MobileNetV2: Inverted Residuals and
Linear Bottlenecks’ [5]. MobileNet_V2 is based on
depth-wise separable convolutions to reduce the
number of parameters. Depth-wise separable
convolutions split computation into 2 steps:
depthwise convolutions applying a single filter to
each input channel, then pointwise convolutions
combining the outputs using 1x1 convolutions.
MobileNet_V2 also introduces the use of inverted
residuals and linear bottlenecks to improve model

efficiency without sacrificing accuracy. Therefore,
this model is ideal for tasks with limited
computational resources, such as mobile and
embedded systems.

4.5 Transfer Learning by Fine-tuning Pre-trained
Models

Two approaches can be used to fine-tune the pre-trained
models. The first approach is by freezing all the
layers in the pre-trained models and only training
the top classification layer. The second approach
is by training all the layers from the pre-trained
models.

4.5.1 FINE-TUNING BY FREEZING ALL LAYERS
EXCEPT TOP CLASSIFICATION LAYER

In this approach, we freeze all feature extraction layers of
the pre-trained models to prevent their weights
from being updated during training. We
customize the output layer of the pre-trained
models to match with the number of classes in
our dataset and only train that layer. For this
approach, we use Cross-Entropy loss function,
Adam optimizer with a learning rate of 0.0001,
and we train the model over 10 epochs.

4.5.2 FINE-TUNING USING ALL LAYERS
In this approach, we also modified the output layer of the

pre-trained models to match with the number of
classes in our dataset. However, we train all
layers of the model, ensuring pre-trained
parameters are also updated during training and
allowing the pre-trained models to adapt to our
specific task. For this approach, we use
Cross-Entropy loss function, Adam optimizer
with a learning rate of 0.0001, and we train the
model over 10 epochs.

5. Results and Discussion

After model training, the trained model is used to make
predictions on the validation dataset utilizing accuracy as
our model evaluation metric. Below are the validation
accuracy scores and confusion matrices for each model
that we explored.

5.1 Baseline Model

Accuracy score: 61.92%

Confusion matrix:

4



Boosting Fan Experience with F1 Car Image Analysis

Figure 6: Confusion matrix for baseline model

As shown in the accuracy score and the confusion matrix
of the baseline model, the performance of the image
classification by the model is low. A significant number
of the Mercedes F1 car images and the Williams F1 car
images are classified as Alpha Tauri F1 car images. In
addition, a significant number of Alpha Tauri F1 car
images and Mercedes car images are incorrectly classified
as Williams F1 cars. Therefore, the model is mainly not
able to differentiate the classes between Alpha Tauri F1
cars, Mercedes cars and Williams F1 cars.

5.2 Pre-trained Models with Layers Freeze

5.2.1 RESNET-18

Accuracy score: 73.87%

Confusion matrix:

Figure 7: Confusion matrix for ResNet-18 with layers freeze

By fine-tuning only the top classification layer of the
RESNET-18 model, we are able to improve the model
from the baseline model. Nevertheless, as can be seen in
the confusion matrix, most of the images that are being
incorrectly classified are from the same Williams F1 car
images, Alpha Tauri F1 cars and Mercedes F1 cars. In
addition, there are also some images from Mclaren F1 car
images that are being incorrectly classified as Ferrari F1
car images and Red Bull Racing F1 car images.
5.2.2 VGG-16

Accuracy score: 71.41%

Confusion matrix:

Figure 8: Confusion matrix for VGG-16 with layers freeze

By fine-tuning the top classification layer of the VGG-16
model, we obtain an accuracy that is significantly better
than the baseline model. However, we get slightly lower
performance compared to the fine-tuned top layer
RESNET-18 model. As it can be seen in the confusion
matrix shown above, where a significant amount of
images from remaining classes are incorrectly classified
as a Alpha Tauri F1 car image. Therefore, the model
mostly confuses a lot of the other classes as a Alpha Tauri
F1 car class.
5.2.3 MOBILENET_V2

Accuracy score: 79.70%

Confusion matrix

5



Boosting Fan Experience with F1 Car Image Analysis

Figure 9: Confusion matrix for MobileNet_V2 with layers freeze

By fine-tuning the top classification layer of the
MobileNet_V2 model, we obtain a model where its
performance is significantly better than the baseline
model and also better performance compared to the
fine-tuned top layer VGG-16 and RESNET-18 models.
However, the model mostly confuses Williams F1 car
images with Alpha Tauri F1 car images. The model also
confuses a lot of the Mclaren F1 images as other classes.

In the comparison of the 3 fine-tuned top layer pre-trained
models - ResNet-18, VGG-16 and MobileNet_V2 - we
observe that the MobileNet_V2 model outperforms the
other two and demonstrates a significant improvement in
performance over the baseline model.

5.3 Pre-trained Models with Full Fine-tuning

5.3.1 RESNET-18

Accuracy score: 95.50%

Confusion matrix:

Figure 10: Confusion matrix for ResNet-18 with no layers freeze

By fine-tuning all the layers of the pre-trained
RESNET-18 model, we are able to achieve a performance
that is significantly better than the baseline model and all
the fine-tuned top layer pre-trained models. The model is
able to achieve good performance across all classes for
image classification.
5.3.2 VGG-16

Accuracy score: 93.99%

Confusion matrix:

Figure 11: Confusion matrix for VGG-16 with no layers freeze

By fine-tuning all layers of the pre-trained VGG-16
model, we are able to achieve a performance that is better
than the baseline model and all the fine-tuned top layer
pre-trained models. However, the model performance is
lower than the fine-tuned all layers RESNET-18 model.

6



Boosting Fan Experience with F1 Car Image Analysis

The model mainly confuses Mercedes F1 car images as
Williams F1 car images.
5.3.3 MOBILENET_V2

Accuracy score: 96.70%

Confusion matrix:

Figure 12: Confusion matrix for MobileNet_V2 with no layers freeze

By fine-tuning all the layers of the pre-trained
MobileNet_V2 model, we are able to achieve the
best performance across all the models tested thus
far. With an accuracy of 96.70%, we are able to
mostly correctly classify all classes of F1 car
images.

6. Model Explainability

Having trained our models on the augmented dataset, we
now attempt to explain why our model predicts a label for
a particular image. For this purpose, we used LIME
(Local Interpretable Model-Agnostic Explanations)
technique to highlight areas of an image that a model does
not use for prediction of the label. We input the image for
a 2023 Mercedes AMG Petronas F1 car and examine the
areas of the image that the model does not use for
prediction.

Figure 13: Areas of image highlighted by LIME

The above image highlights the part of the track above the
car, which is not used by the model for classification.

7. Web Application Implementation

We implement a web application proof-of-concept (POC)
to showcase the predictive abilities of our model. We use
Flask and Jinja to deploy the web application, and the
code can be found in the GitHub repository that we share
along with our paper and presentation. The web
application has a simple landing page where the user
uploads the photo of a F1 car that he/she wants our model
to classify. Once the user feeds the image into the
application, the application preprocesses the image, loads
the model and feeds the preprocessed image into the
model. The output generated by the model is returned as a
list of logits, which are converted to probabilities, and
finally, the class with the largest probability is returned.
We then display that class name in the web application.
Below are a few screenshots from our web application.

Figure 14: Landing page of the web application

7



Boosting Fan Experience with F1 Car Image Analysis

Figure 15: Testing with image of a 2020 Mclaren F1 Car

Figure 16: Testing with image of a 2023 Mercedes F1 Car

8. Conclusion and Future Work

In this project, we attempt Formula 1 cars image
classification using different deep learning architectures.
This can help new fans understand the teams and their
origins and have a smoother experience while watching
the race.

We approach the problem using a labeled dataset
containing 8 distinct car classes (teams) within Formula 1
racing.

It is concluded that MobileNet_V2 with full fine-tuning
leads to faster convergence and better prediction results
compared to the other models. Significantly, the above
conclusion is not final, as some other models could also
be tested. Better results could be achieved by using proper
resources and overcoming limitations.

Nonetheless, the deduction obtained from this research is
very substantial, and proper inferences can be obtained to
decide upon the best model.

In the future, traditional models and other deep
convolutional neural networks can be implemented and
compared. In addition, other large-scale vehicle datasets
(Boxcars, BRCars, etc.) can be utilized to evaluate the
diversity of models for the fine-grained classification of
vehicles.

Another approach that can be explored is to use a
bounding box object detector. Specifically, PASCAL

VOC file format (an XML file format used by Image Net)
can be used to annotate the images. After converting the
PASCAL VOC primitive dataset to a TFRecord file
(format optimized for tensorflow), an object detector
model such as MobileNet SSD can be used to detect the
cars and label them.

Acknowledgments
We would like to acknowledge the National University of
Singapore for providing us with the necessary learnings
and resources to ensure that we complete this project with
adequate analysis. We would especially like to thank the
NUS School of Computing for these resources.

References
Bhardwaj, S., Gupta, A., & Infanti, C. (2019). Image
Classification of Race Cars. WWT.
https://www.wwt.com/wwt-research/image-classificatio
n-of-race-cars [1]

Formula One Cars. Kaggle. Retrieved April 15, 2023,
from
https://www.kaggle.com/datasets/vesuvius13/formula-o
ne-cars?select=Formula+One+Cars [2]

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep
Residual Learning for Image Recognition. arXiv
(Cornell University).
https://doi.org/10.48550/arxiv.1512.03385 [3]

Simonyan, K., & Zisserman, A. (2014). Very Deep
Convolutional Networks for Large-Scale Image
Recognition. Computer Vision and Pattern Recognition.
http://export.arxiv.org/pdf/1409.1556 [4]

Sandler, M., Howard, A. W., Zhu, M., Zhmoginov, A., &
Chen, L. (2018). MobileNetV2: Inverted Residuals and
Linear Bottlenecks. arXiv (Cornell University).
https://doi.org/10.1109/cvpr.2018.00474 [5]

8


