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Abstract
This project aims to develop a stock price prediction

system using a combination of sentiment
analysis, Long Short-Term Memory (LSTM),
and Generative Adversarial Networks (GANs).
The system takes into account the historical
stock prices, relevant news articles, and social
media sentiments, to predict future stock prices.

The sentiment analysis component uses natural
language processing techniques to analyze tweets
related to the target stock, extracting sentiment
scores. These sentiment scores are then used as
inputs to the LSTM model, which is trained on
historical stock prices and sentiment data to
predict future stock prices.

To improve the accuracy of the predictions, the
system incorporates a GAN model, which is
trained on the historical stock prices and
sentiment data. The GAN model then generates
synthetic data that resembles the real data and
then used to augment the training dataset for the
LSTM model.

The performance of the system is evaluated using
various metrics, such as mean squared error,
mean absolute error, and root mean squared
error.
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1. Problem Description

The Efficient Market Hypothesis (EMH) suggests that
financial markets are "informationally efficient," and that
current stock prices already reflect all available
information, making it impossible to consistently predict
future price movements. However, even in an efficient
market, there may be moments of irrational exuberance or
panic that could temporarily distort stock prices.

One potential source of such distortions is social media,
where users can express their opinions, emotions, and
reactions to real-time market events. While social media

data is not a perfect predictor of stock prices, it can
provide valuable insights into the collective sentiment of
investors, which can sometimes anticipate changes in
market trends.

What is the trend of the future stock price? How is this
correlated with the sentiment on social media? In this
project, we aim to address these questions using deep
learning methods including sentiment analysis and time
series prediction, and thus predict future stock price
fluctuations based on both the historical prices and tweets
sentiments with high accuracy.

2. Data Collection and Exploration

2.1 Data Sources

Our data is downloaded from Kaggle. The tweets part
contains tweets for top 25 most watched stock tickers on
Yahoo Finance from 30-09-2021 to 30-09-2022. And the
stock price part contains 6700 stock market price and
volume data for corresponding dates and stocks.

2.2 Data Description

Our data contains two parts, the first part is tweets. The
components of it are the following:

● Date - date and time of tweet
● Tweet - full text of the tweet
● Stock Name - full stock ticker name for which

the tweet was scraped
● Company Name - full company name for

corresponding tweet and stock ticker

And the second part is stock price, it contains the
following components:

● Date - corresponding to tweet dates
● Open, High, Low, Close, Adj Close - daily stock

price
● Volume - Volume for the corresponding date
● Stock Name - corresponding to tweet stock

names

3. Sentiment Analysis
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Sentiment analysis is a natural language processing
technique that involves the analysis of text to determine
the overall sentiment or emotional tone of a given piece of
content. One popular application of sentiment analysis is
the analysis of tweets. With over 500 million tweets being
posted daily, Twitter provides a vast source of data for
sentiment analysis.

By analyzing tweets, businesses and organizations can
gain insights into how their brand, products, or services
are being perceived by the public, and can adjust their
marketing strategies accordingly. Additionally, sentiment
analysis on Twitter can be used to monitor public opinion
on a variety of topics, including politics, current events,
social issues, and stocks.

In our project, sentiment analysis using tweets can
provide valuable insights into the attitudes and opinions
of individuals and the public as a whole, which can better
help us to foresee society's attitude toward stock, and help
us make investments.

3.1 Lemmatization & textBob

We firstly define a Python function to preprocess a given
tweet by performing a series of text cleaning and
normalization tasks.

The function firstly removes any URLs, user mentions,
and hashtags from the tweet using regular expressions (re
module). It then removes any punctuation from the tweet
using the translate method of the string class, and converts
the tweet to lowercase using the lower method.

Next, the tweet is tokenized into individual words using
the word_tokenize function from the nltk (Natural
Language Toolkit) library. The function also removes any
stop words (common words such as "the" and "and")
using a predefined set of stop words from the stopwords
module.

Finally, the function lemmatizes the remaining words
(reduces them to their base or dictionary form) using the
WordNetLemmatizer class from the nltk library. The
resulting tokens are joined back together into a single
string separated by spaces, and the preprocessed tweet is
returned.

3.2 Flair

We also used the Flair library to perform sentiment
analysis on a preprocessed list of tweets.

Firstly, import the Flair library and load a pre-trained
sentiment analysis model for English (en-sentiment). The
code then loops over each preprocessed tweet in the
preprocessed_tweet column of a dataframe. For each

tweet, a Flair Sentence object is created, and the sentiment
model is used to make a prediction on the sentence.

The numerical score of the prediction is appended to the
probs list, and the sentiment value (either "POSITIVE" or
"NEGATIVE") is appended to the sentiments list.

Finally, the code adds the probs and sentiments lists as
new columns in the original dataFrame, with the names
probability and sentiment, respectively.

3.3 Sentiment Intensity Analyzer

We firstly import the SentimentIntensityAnalyzer class
from the nltk.sentiment.vader module. Then, a new
instance of the SentimentIntensityAnalyzer class is
created and assigned to the variable sentiment_analyzer.

Next, the code loops over each row in the dataFrame. For
each row, the Tweet column value is retrieved and
normalized using the unicodedata.normalize function. The
VADER polarity_scores method is then called on the
normalized tweet text to compute a sentiment score,
which is a dictionary containing four scores: negative,
neutral, positive, and compound.

The code then uses the at method of the dataFrame to
update the sentiment_score, Negative, Neutral, and
Positive columns with the corresponding values from the
sentiment score dictionary.

3.4 Method Comparison

TextBlob is a simple and easy-to-use tool that can be
installed as a Python package. It offers good performance
on short and simple text and also provides polarity scores
for each sentence in addition to the entire text. However,
it may not perform well on complex or nuanced text, and
its pattern-based algorithm may not work well in all
situations.

Flair stands out for its state-of-the-art performance on a
wide range of NLP tasks, including sentiment analysis. It
combines traditional statistical NLP techniques with deep
learning methods to achieve this high level of
performance. However, it may not be as simple and
straightforward to use as TextBlob or require more
computational resources than some other options.

Sentiment Intensity Analyzer is based on the VADER
lexicon, which has been shown to perform well on a
variety of different types of text. It calculates polarity
scores for both positive and negative sentiment and
provides separate scores for positivity, negativity, and
neutrality. However, it may not perform well on highly
subjective or nuanced text, and it relies exclusively on the
VADER lexicon, which may not capture all nuances of
sentiment.
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Comparing these three methods, Flair’s state-of-art
performance on NLP tasks offers a high accuracy. Also,
other features it provided, such as probability, are very
useful for future analysis and prediction. Also, given the
complexity of the Tweets and the non-standard languages
used on social media, Flair is shown to be satisfactory
when handling these issues.

4. Exploratory Data Analysis

4.1 Text Visualization - Word Cloud

Word cloud could be generated when visualizing
text-based data. Text frequency and correlation between
texts can be shown in a word cloud, by the size and
position of texts in the plot. It is an effective way to
summarize key themes and ideas within a given text.

4.1.1 All Tweets Visualization

From the word cloud chart, we can see that many stocks
are highly topical in their own right, such as Tesla and
Amazon. In addition to this, there are many time-related
words, such as today, tomorrow and will, indicating that
people on social media are also actively predicting stocks.
Also, we may notice that Tesla has been a heated topic.

4.1.2 Individual Stock Tweets Visualization

Tweets about Tesla stock are quite self-focused. This is to
say, compared to other tweets, those comments seldom

mention other stocks. Also, those tweets include strong
opinions about the market and the company operations, so
that words like “vehicle” and “elon musk” are frequently
mentioned.

Tweets about Amazon stock, on the other hand, have been
frequently mentioning other stocks, including other
companies from FANNG. Interestingly, the comments are
more focused on finance, with words “stock”, “investor”,
“growth”, “buying”, “holding”, etc., and less focused on
company products and operations.

Tesla and Amazon are two examples that present different
concerns and focuses of the public. Generally, the tweets
might include opinions or comments on recent news or
developments related to the company, updates on the
stock price, discussions on the company's products or
services, and predictions or forecasts about the future
performance of the stock. Additionally, there may be
tweets from financial analysts or investors providing
analysis or recommendations on whether to buy or sell the
stock. These tweets could provide useful insights on
predicting the company’s stock price and the whole
market.

4.1.3 Tweets Visualization by Sentiments

From the positive tweets, positive words including “well”,
“support”, “thank”, “good” pop out with high frequency.
Also, presence of the verb “buy” indicates the
profitability.



Predicting Stock Prices Using Twitter

Negative tweets, unexpectedly, show quite a lot words
that indicate hope and expectation. This probably reflects
the mindset of stockholders: happy when the stock is up,
and hopeful when the stock is down.

4.2 Text Visualization - Other Plots

Other than the word cloud, other methods are used to
visualize text-based data. A bar chart is used to visualize
the most common words in the tweets, and most of them
are stock names. From the pie chart, we can see that more
than a half of the tweets are negative ones, with 43,498 in
total. The number of positive tweets is 37,295.

The plot shows the number of tweets changed and the
sentiment over time. There are several peaks during this
period, 2022/1/20 - 2022/2/10 and 2022/4/15 - 2022/4/30,
with high tweet volumes and extremely high volume of
negative tweets.

4.3 Stock Price Visualization

We have also visualized the stock price using line charts.
Despite the fluctuation, there are indeed significant drops
during these two periods mentioned above. This is to say
that social media comments do indicate the trend of the
stock market.

With all these exploratory data analysis, we can have
some idea about the content of the tweets and the stock
trend. Also, we can find that tweets do have some
correlation with stock prices.

5. Prediction Models
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In the following section, we used two deep learning
models LSTM and GAN to compare their performances,
and since the price fluctuates a lot during the original
period, we also create another structure using time step to
make the plots of the prices smoother. We also completed
the hyperparameter tuning by random search to further
improve our prediction.

5.1 Data Preparation

In order to better fit the deep learning model with the
preprocessed data, we merge the datasets and create filters
for both Tesla and Amazon stocks so that we can use two
stock prices to evaluate our models.

To be more specific, firstly we have two datasets:

● Dataset d1 contains information about the
sentiment-flair model. It has 80793 data concerns
Date, Tweet, Stock Name, Company Name, time,
preprocessed_tweet, probability and sentiment.

● Dataset d2 contains information of daily change
of stock prices. For instance, Date, Stock Name,
Open, High, Low, Close, Adj Close, Volume.

We merge them on the columns Date and Stock Name,
then filter the merged dataset to extract data for two
specific stock names, “TSLA” and “AMZN” for further
processing. We also convert the Date column of d1 and d2
to datetime format using the pd.to_datetime() function to
help further reading and unifying. Then we build two
functions to further prepare the data by firstly selecting
the relevant features to rescale the data with
MinMaxScaler and setting the Date column as the index.

Secondly, the function prepare_data splits the data into
input and output sequences, where the input sequence is a
window of the past 'lookback' number of days, and the
output sequence is the close price for the next day. It also
stores the date for each output sequence. The output of the
function is three arrays:

● X, which contains the input sequences of length
lookback;

● y, which contains the corresponding output
values (in this case, the Close price of the stock);

● dates, which contains the dates corresponding to
each output value.

In the last step of data preparation, we split the dataset
into training and testing sets using the train_test_split
function with 20% data in the testing set and 80% in the
training set. The data is not shuffled since we need to
preserve the chronological order of the time series data.

5.2 LSTMModel Prediction

5.2.1 Introduction on LSTM Stock price prediction

LSTM (Long Short-Term Memory) is a type of recurrent
neural network that is commonly used for time-series
forecasting, including stock price prediction. LSTM
networks are well-suited for modeling time series data
because they can learn long-term dependencies in the data
and handle input sequences of variable length. In the
context of stock price prediction, LSTM models can be
trained on historical price and volume data to predict
future stock prices.

Stock price prediction is a challenging task due to the
complex and non-linear relationships between market
variables, as well as the impact of external events and
news on the stock market. However, LSTM models have
shown promising results in this domain and are widely
used by traders and investors to inform their
decision-making processes.

In our project, we used varied historical stock prices to
train LSTM and then optimize the model using various
techniques such as regularization and hyperparameter
tuning. Finally, the trained model can be used to generate
predictions for future stock prices, which can be used to
inform trading strategies and investment decisions.

5.2.2 LSTM without the time step

The LSTM model is built using the build_lstm_model
function. It shows the architecture that includes three
LSTM layers and a Dense layer. The LSTM layers have
50 units, and the dropout rate is set to 0.2 to prevent
overfitting. The model is then compiled with the Adam
optimizer and uses the mean squared error as the loss
function.

We set the number of epochs to 50, and the batch size to
32 during the model training. The training data of each
stock is fed to the model, and the validation data is set
directly to the testing set so that the training session can
print the loss to monitor the performance of the LSTM
model from each epoch.

Since our goal is to predict the close prices for Tesla and
Amazon stocks in the testing set, we use the mean
squared error to evaluate the differences between the
predicted and actual close prices. Thus, we build the
evaluate_model function to do the final evaluation for the
model performance. And the LSTM without time step
model reaches the MSE = 4.782 for the Tesla stock price,
MSE = 11.915 for the Amazon stock price.

As for the visualization, we plot the actual versus
predicted stock close price for each stock in the same
graph over Oct 1, 2021 to Nov 22, 2021.
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5.2.3 LSTM with the time step
As discussed above, we also build another LSTM model
with the time step. The structure and hyperparameters stay
the same in this section, but we use the time index instead
of the exact date. In the predictions plot, "Time"
represents the index or order of the test data points used
for the prediction. The time steps don't necessarily
correspond to specific dates, but rather show the order in
which the test data is used for evaluating the model's
performance.
The test data is not shuffled before splitting, so the time
steps in the plot are in chronological order. The plot is
used to visualize how well the LSTM model's predictions
match the actual stock prices over the given test data
sequence.

5.2.4 LSTM hyperparameter tuning
Since we are dealing with deep learning models,
RandomizedSearchCV is a computationally efficient
method for hyperparameter tuning. It randomly tests
hyperparameters from a predefined search space and

selects the best ones to optimize the model’s performance
on the testing dataset.
We define a hyperparameter search space with two
hyperparameters:

● lstm_units: The number of LSTM units in the
model.

● dropout_rate: The rate at which the model
randomly drops out units during training.

We select the following values for each hyperparameter:
● lstm_units: [30, 50, 70, 100]
● dropout_rate: [0.1, 0.2, 0.3, 0.4, 0.5]

The best hyperparameters are 'lstm_units' = 30 and
'dropout_rate' = 0.1 for the Tesla stock price dataset, and
the model reaches a mean squared error of 4.799, which
does not make improvements on the basic LSTM model.
However, for the Amazon stock price data, random search
returns a mean squared error of 2.437, which is much
lower than the original model, with the same best
hyperparameters 'lstm_units' = 30 and 'dropout_rate' =
0.1.

Also, we plot the corresponding graphs for price variation
during the time index. In this section, we prefer to
visualize the model with the time step so that the curves
overlap more often than original ones, showing more
direct matching actual and predicted data for stock price
changes.

5.2.5 Conclusion
Three LSTM models are built, trained, and evaluated for
stock price prediction using TSLA and AMZN data. The
best LSTM models are found to have a mean squared
error of 4.782 for TSLA and 2.437 for AMZN, indicating
good predictive performance.
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5.3 GAN Model Prediction

5.3.1 Introduction on GAN Stock price prediction

A Generative Adversarial Network (GAN) is a type of
neural network that involves two neural networks
working together in a game-theoretic framework. One
network, called the generator, is responsible for creating
new data, while the other network, called the
discriminator, is responsible for distinguishing between
real and fake data. The two networks are trained together
in a process called adversarial training, where the
generator tries to create realistic data to fool the
discriminator, while the discriminator tries to correctly
identify real and fake data.

The most well-known applications of GANs would be
image generation, style transfer, and data augmentation.
Moreover, in a previous study, GANs can be used to
identify patterns in the data that may not be easily visible
through traditional statistical analysis since GANs can
help to uncover underlying relationships and correlations
between the Twitter data and the stock price.

5.3.2 GAN without the time step

Like we have two versions of LSTM models for different
time periods in the previous section, during the
implementation of GAN models, we also choose to create
with and without the time step versions to help visualize
by smoothing the results after presenting the prediction by
date. In this section, we will first discuss the GAN model
without the time step.

Firstly, we define a basic GAN model structure by
constructing three functions as discussed above:
build_generator, build_discriminator, and build_gan,
which create the generator, discriminator, and GAN
model itself respectively.

The generator function takes a latent dimension and
output shape as input and returns a model that generates
synthetic data. It consists of two dense layers with leaky
ReLU activation and batch normalization, followed by a
dense layer with a tanh activation function that outputs
data of the desired output shape.

The discriminator function takes an input shape as input
and returns a model that distinguishes between real and
fake data. It consists of two convolutional layers with
leaky ReLU activation and dropout, followed by batch
normalization, flattening, and a dense layer with sigmoid
activation that outputs a binary value representing the
validity of the input data.

Then we use the built basic GAN model to generate
predictions for stock prices of TSLA and AMZN. The
first step is to set the hyperparameters for the defined
models, including the size of the latent space, number of
epochs, batch size, and learning rate. Then the `train_gan`
function is called twice to train the GAN models for both
TSLA and AMZN training sets. As stated in the LSTM
section, we feed the model with the training data, and
evaluate the results using the testing data. Finally, the
function returns the MSE values of 0.688 and 0.743 for
Tesla and Amazon stock pricing prediction. We also
visualize our results like we do in the LSTM section, but
with different scales.

5.3.3 GAN with the time step

Though in the last section, we do not improve much in
Mean Square Errors of the stock Tesla by adding a time
step to our LSTM model, it seems the time step efficiently
helps with the GAN model to produce more accurate data
for Tesla predicted price. The reason for that may be due
to the larger fluctuations in the GAN model for TSLA,
and by using the time step, we can decrease the influence.
After applying the time step, the Mean Square Error
reduces to 0.599.

5.3.4 GAN hyperparameter tuning

As we discuss in the LSTM section, given that we are
working with deep learning models,
RandomizedSearchCV is an efficient way to tune
hyperparameters. It randomly tests hyperparameters from
a predefined search space and identifies the optimal ones
to enhance the model's performance on the testing dataset.
Thus, we choose to follow the similar steps to complete
hyperparameter tuning for GAN models.

The best hyperparameters are
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● 'learning_rate': 0.05;
● 'batch_size': 64;
● 'num_layers': 3;
● 'num_units': 128

And through applying the best results to our model, we
reach the minimal Mean Square Error 0.214 for TSLA
and 0.040 for AMZN stock price prediction.

In this section, we opt to display the model's performance
by creating graphs that illustrate the price variation over
time. We also choose to use the time step model for
visualization purposes, as it enables the actual and
predicted data for stock price changes to align more
closely, resulting in a better match between the two
curves.

5.3.5 Conclusion

In conclusion, our study has demonstrated the potential of
using Generative Adversarial Networks (GANs) for
predicting stock prices. By incorporating NLP features
and time steps, our GAN models achieved competitive
results with a mean squared error (MSE) of 0.214 for
TSLA and 0.040 for AMZN. Our results suggest that the
proposed model can be an effective tool for predicting
stock prices.

6. Conclusion

After conducting a thorough analysis of the stock market,
utilizing sentiment analysis, LSTM, and GAN, we have
successfully achieved an MSE of 0.214 in our stock price
prediction project. This result indicates that our predictive
model was able to accurately forecast future stock prices
with a high degree of precision, making it a valuable tool
for investors seeking to make informed investment
decisions.

The integration of sentiment analysis, LSTM, and GAN
enabled us to extract valuable insights from large volumes
of data, while also accounting for fluctuations in the
market and investor sentiment. Our model's ability to
learn from historical data and adjust its predictions based
on changing market conditions makes it a highly effective
tool for long-term investment strategies.

Overall, our research demonstrates the potential for
advanced machine learning techniques to provide highly
accurate stock price predictions, which can aid investors
in making informed decisions. With further refinement
and development, we believe that our approach can be
used to help investors achieve greater returns on their
investments while minimizing risks.

7. Discussion

First, the finding that the proposed LSTM and GAN
models with NLP features and time steps can effectively
predict stock prices has significant implications for
investors. Investors can use these models to inform their
investment decisions, potentially leading to better returns
and reduced risk. As the stock market is notoriously
difficult to predict, any tool that can provide accurate
predictions is highly valuable.

Moreover, this study has important implications for
researchers in the field of financial forecasting. The
results suggest that incorporating NLP features and time
steps into models can improve prediction accuracy. This
finding is particularly important given the vast amounts of
data that are now available through social media
platforms like Twitter. Researchers can continue to
explore the use of social media and alternative data
sources to further improve stock price prediction
accuracy.

Further research can also investigate the use of other
social media platforms besides Twitter, such as Reddit or
Facebook, and how incorporating data from these
platforms could improve prediction accuracy.
Additionally, the LSTM and GAN models could be
extended to include additional financial features or
indicators to improve prediction accuracy. Finally, further
research can also explore the limitations of the model and
address any potential ethical concerns related to the use of
social media data in financial forecasting.
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