
Group 6
CHEN JIA
CHEN YI

GAO YUNYI
SUN YUROU
XIAO LIANG

Santander Hybrid Recommendation System

Github Link: https://github.com/xlsi/Santander-Hybrid-Recommendation-System

Abstract

Santander Bank is a wholly owned subsidiary of the
Spanish Santander Group based in Boston and its
principal market is the northeastern United States. With a
huge customer base, the current recommendation system
of Santander provides a disproportionate customer
experience as only a few customers receive numerous
recommendations while many others hardly receive any.

Thus in this project, we explored different machine
learning based recommendation models using user
personal information and their product purchase history.
These models include: 1. baseline model (recommend the
most popular products); 2. Tree based model (Decision
Trees, Random Forest); 3. Autoencoder and its variants
for collaborative filtering. We also explored combining
these models into an ensemble model. After evaluating
with the hit ratio, collaborative filtering is identified as the
best-performing model.

1. Introduction

Santander Bank is a wholly owned subsidiary of the
Spanish Santander Group based in Boston and its
principal market is the northeastern United States. With a
huge customer base, the current recommendation system
of Santander provides a disproportionate customer
experience as only a few customers receive numerous
recommendations while many others hardly receive any.

This leads to two consequences: From the bank side, it
will lose potential opportunities to sell products to its
customers causing potential revenue loss. From the
customer’s side, those that hardly receive any
recommendations will have bad user experience, and have
little idea about the various products available in the bank.

By implementing a more efficient recommendation
system, the team intends to cater to the needs of each

customer, and enhance their overall user experience,
which will in turn increase the revenue of the bank.

2. Dataset & Exploratory Data Analysis

The team is provided with 2 datasets - the training dataset
and test dataset. In the training dataset, input variables
include the basic information of each customer including
their age, employment status, income level and the
products they owned in each month between Jan 2015 and
May 2016. In the test dataset, the same input variables are
available except the product variables which are binary
prediction variables that indicate additional products that
a customer will get in the next month, in addition to what
they already have in May 2016.

Table 1: Input Variable Description Table

Column Name Description

fecha_dato Month. The table is partitioned for this
column

ncodpers Customer code

ind_empleado Employee index: A active, B ex
employed, F filial, N not employee, P
pasive

pais_residencia Customer's Country residence

sexo Customer's sex

age Age

fecha_alta The date in which the customer
became as the first holder of a contract
in the bank

1

ind_nuevo New Customer Index. 1 if the
customer registered in the last 6
months.

antiguedad Customer seniority (in months)

indrel 1 (First/Primary), 99 (Primary
customer during the month but not at
the end of the month)

ult_fec_cli_1t Last date as primary customer (if he
isn't at the end of the month)

indrel_1mes Customer type at the beginning of the
month ,1 (First/Primary customer), 2
(co-owner),P (Potential),3 (former
primary), 4(former co-owner)

tiprel_1mes Customer relation type at the
beginning of the month, A (active), I
(inactive), P (former customer),R
(Potential)

indresi Residence index (S (Yes) or N (No) if
the residence country is the same than
the bank country)

indext Foreigner index (S (Yes) or N (No) if
the customer's birth country is
different than the bank country)

conyuemp Spouse index. 1 if the customer is
spouse of an employee

canal_entrada channel used by the customer to join

indfall Deceased index. N/S

tipodom Addres type. 1, primary address

cod_prov Province code (customer's address)

nomprov Province name

ind_actividad_c
liente

Activity index (1, active customer; 0,
inactive customer)

renta Gross income of the household

segmento segmentation: 01 - VIP, 02 -
Individuals 03 - college graduated

Table 2: Prediction Variable Description Table

Column Name Description

ind_ahor_fin_ult1 Saving Account

ind_aval_fin_ult1 Guarantees

ind_cco_fin_ult1 Current Accounts

ind_cder_fin_ult1 Derivada Account

ind_cno_fin_ult1 Payroll Account

ind_ctju_fin_ult1 Junior Account

ind_ctma_fin_ult1 Más particular Account

ind_ctop_fin_ult1 particular Account

ind_ctpp_fin_ult1 particular Plus Account

ind_deco_fin_ult1 Short-term deposits

ind_deme_fin_ult1 Medium-term deposits

ind_dela_fin_ult1 Long-term deposits

ind_ecue_fin_ult1 e-account

ind_fond_fin_ult1 Funds

ind_hip_fin_ult1 Mortgage

ind_plan_fin_ult1 Pensions

ind_pres_fin_ult1 Loans

ind_reca_fin_ult1 Taxes

ind_tjcr_fin_ult1 Credit Card

ind_valo_fin_ult1 Securities

ind_viv_fin_ult1 Home Account

ind_nomina_ult1 Payroll

ind_nom_pens_ult1 Pensions

ind_recibo_ult1 Direct Debit

2.1 Exploratory Data Analysis

Since the training dataset contains Santander Bank’s
customers’ monthly product usage records, time series

2

plots can help better understand what’s happening over
time.

From the monthly number of customers plot, it is
observed that Santander Bank’s customer base has been
steadily increasing month on month over the period and
achieved a great jump in June 2015. However, at the same
time, the average number of products purchased per
customer has been dropping significantly after June 2015,
which further proves that a good recommendation system
needs to be implemented for Santander Bank to provide
better experience to their customers.

Plot 1: Number of Customers by Month

Plot 2: AVG Number of Products Per Customer by Month

Again, when time series is plotted by each product, only
some products showed a similar increasing trend as the
customer base while the other products became less
popular even when the number of customers increased.
An example of the products that have been more popular
with a larger customer base is ind_cno_fin_ult1, while is
the Payroll Account. An example of the products that

have been less popular even with a larger customer base is
ind_ctop_fin_ult1, which is the Particular Account.

Plot 3: Number of Customers by Product by Month

Another important finding is that almost all customers
hold a current account and almost half of the customers
only purchased one product throughout the period. This
will make recommendation even harder as we have
limited ground truth about the products that customers
actually purchased.

Plot 4: Total Number of Products Purchased by
Customers

Plot 5: Distribution of Customer Products Number

3

3. Data Pre-processing

The data-preprocessing mainly performed in this project
is null-value handling.

For baseline models and tree-based models, missing
values are filled in with 0. Input data was grouped into
feature variables (e.g. user age, user income level) and
target variables (products that users purchased).

For the collaborative filtering model user-item matrix,
rows where all values are 0, which means that the
customer does not own any products are all, were
removed from the dataset. Otherwise, null values are
filled in with 0.

4. Modeling

4.1 Model Evaluation

The success metric to measure the effectiveness of the
recommendation system in place is the recommendation
hit ratio - the number of recommended products
purchased by customers divided by the total number of
additional products that they purchased in the following
month. The recommendation system should serve to
recommend products that are highly likely to be
purchased by customers. The more recommended
products bought by customers, the better the
recommendation system.

4.2 Baseline Model Concept

The bank wants all the products that the customer is most
likely to buy in the coming month based on the
customers’ meta data and historical purchases, so that

they can recommend the top products to boost sales and
provide better services.

To map this into a business problem, we have to predict if
a customer would purchase a certain product in a month
or not. This problem can be defined as a special
multi-output classification problem where we calculate
the probability that a customer would purchase a product
as the output. According to the dataset specifications, at
most 7 products are recommended to customers and the
rest are ignored. In addition, we assume that customers
cannot buy products he already owns, which means he
can only add new products have not bought before in the
next month.

To illustrate the basic concept, as we will be predicting
probabilities of various products and customers can opt
for more than one product at a time, we would need multi
label log loss. The baseline model first collects products
owned by all customers and deleted rows where no new
purchase is made. Then the model randomly assigns
products to customers denoted as “added products”. If a
product is owned by the customer already, then its
probability will be set to 0 and append the next product.
To make more sense, the next step is to recommend the
most popular products that customers have not owned yet.

4.3 Tree Based Model

After introducing our basic concepts in mapping business
problems, now it is time to implement them in models. In
order to make better predictions with metrics to evaluate
the final recommendations, we employed two tree-based
models to predict products that may interest customers
and recommended seven new products to them.

4.3.1 Decision Tree

We first used a simple decision tree classifier to fit our
training data set split from the original train file. Given
the size of the data, trees are chosen because they are fast
to train and evaluate. Then we make predictions on the
validation set to get the top ranked products with highest
probability that customers may choose to purchase in next
month. After removing the products that are already
owned by customers, final “add_products” columns
represent the model’s recommendations for each customer
for the next month’s recommendation.

4

The overall performance of decision tree model is:

Table 3: Decision Tree Model Performance

Accuracy Precision F1-score Hit-ratio

0.38 0.39 0.39 0.39

As we can see from the scores generated, the decision tree
model did not perform well on recommending products
even with the train file. These low scores could be due to
noise and outliers in the data set that the decision tree
model is sensitive to. In addition, based on our dataset,
customer purchasing patterns are hard to predict by a
single decision tree without a measure of feature
importance.

To further improve the scores, decision trees can be
combined with other trees to create more powerful
models, such as Random Forests. Random Forest can
reduce the variance by aggregating the results of multiple
trees, moreover, Random Forest is more robust to outliers
and noisy data than decision trees.

4.3.2 Random Forest

To make this prediction, we used a random forest
classifier to determine the probability of a customer
purchasing each product. We then filtered the top products
with the highest probability, removed those already
owned by the customers, and recommended the remaining
products to the customers.

The sample result is shown in the following table. In this
table, “added_products” denotes the top 7 products we
recommend , and “actually_buy” represents the products
that a customer actually buys. For instance, for the
customer with ID 1229085, we recommend products such
as Guarantees, Pensions, Derivada Account, Payroll,
Home Account, Long-term deposits, and Loan. It is worth
noting that this customer eventually purchased one
product, namely Guarantee, which was among our
recommended products. However, for customer 1229084,
who bought the products Payroll Account, Payroll, and
Pensions, our tree based recommendation model did not
hit any of these products.

Table 4: Recommendation results with Random Forest

ncodpers added_products actually_buy

1229085 Guarantees, Pensions,
Derivada Account, Payroll,
Home Account, Long-term
deposits, Loan

Guarantees

1229084 Guarantees, Derivada
Account, Home Account,
Derivada Account, Loans,
Taxes, Medium-term
deposits

Payroll
Account,
Payroll,
Pensions

The overall performance of the random forest model is as
follows:

Table 5: Random Forest Model Performance

Accuracy Precision F1-score Hit-ratio

0.44 0.63 0.52 0.44

Based on the result report, it can be observed that the
tree-based model did not perform ideally in this
recommendation project, with a lower accuracy and
hit-ratio score. This is primarily due to the fact that
customers' purchasing habits vary greatly from one
another, making it difficult to identify similar patterns.
Moreover, the dataset is quite large and contains many
undefined and unstructured values, which create a lot of
noise in our predictions.

4.4 Collaborative Filtering

Collaborative filtering is a recommendation technique that
can be used to suggest relevant banking services to users
based on their profile or banking activity. It works by
analyzing the patterns and preferences of similar users,
and then making recommendations based on the actions
of those users. For example, if a group of users with
similar banking activities and profiles have shown interest
in a specific banking service, then it is likely that other
users in this group would also be interested in the same
service.

5

In this project, we used auto-encoder and its variants to
implement collaborative filtering to capture user
preferences and make recommendations.

An auto-encoder is a category of neural network that is
appropriate for unsupervised learning assignments, such
as creating models, reducing dimensionality, and efficient
encoding. It has demonstrated its exceptional ability to
learn the fundamental feature representations in various
fields, such as computer vision, speech recognition, and
language modeling. As a result, new recommendation
systems have included auto-encoder, creating more
chances to enhance user experiences and meet customer
expectations.

The AE model architecture is implemented as below:

Auto-Encoder (AE)

|-- Encoder

| |-- Linear (nb_products -> 512)

| |-- Sigmoid

| |-- Dropout (0.9)

| |-- Linear (512 -> 80)

| |-- Sigmoid

|-- Fully connected layers

| |-- fc1: Linear (80 -> 32)

| |-- fc2: Linear (80 -> 32)

|-- Reparameterization

|-- Decoder

|-- Linear (32 -> 80)

|-- Sigmoid

|-- Linear (80 -> 512)

|-- Sigmoid

|-- Linear (512 -> nb_products)

In total we have 687830 records of the user-item matrix
after deleting blank rows and filling nah values with 0.
We first calculate how many products each user has
owned to see the distribution and sparsity of source data.
For data preprocessing ,the transaction data was read
using pandas and grouped by the user identifier
'ncodpers'. The sum of all the products/services the user
had was calculated. Below is the table showing the top 5
count of product rates.

Table 6: Top 5 Count of Product Rate

Count of product rates Count of records

1 452337

2 117885

3 47187

4 27366

5 16824

We can find from the table that most of the users own less
than 3 items, which means that our data is very sparse.

The data was then split into training and testing sets. For
model development, we trained an AutoEncoder to learn
the low-dimensional representations of user preferences
for banking products/services. The AE model consists of
an encoder and a decoder. The encoder reduces the
dimensionality of the input data, while the decoder
reconstructs the input from the reduced dimensionality.

We implemented the AE model in PyTorch and trained on
the user transaction data with a batch size of 256, using a
mean squared error (MSE) loss function. The MSE loss
function only considers the user-rated products while
ignoring unrated products. A total of 200 epochs were
used for training.

During the training process, the model's performance was
evaluated on a validation set. The average training and
validation loss for each epoch were printed and plotted in
the graph below.

Plot 6: AVG Training and Validation Loss at Each Epoch

6

The training record shows a consistent decrease in both
training and validation loss as the number of epochs
increases, indicating that the model is learning to
reconstruct the input data more accurately over time. And
it can be observed that the model's performance improves
substantially in the initial epochs and continues to
improve, albeit at a slower rate, in later epochs.

After training, the AE model was used to predict product
preferences for users in the test set. The recommendations
were generated by selecting the top 2 products for each
user that they had not yet interacted with, based on the
predicted preferences.

We experimented with different numbers of recommended
items to evaluate the models' performance, and the results
are as follows:

Table 7: Model Performance with Different Number of
Recommended Items

#Recommended Items Model Hit Ratio

5 AE 0.09

VAE 0.03

10 AE 0.53

VAE 0.42

The Hit Ratio is not particularly satisfactory, which we
believe may be due to the sparsity of our data. Once the
model is deployed, we can get more feedback to retrain
the model.

5. Conclusions

5.1 Model Results Comparison

The summary of each model’s performance is in the table
below:

Table 8: Model Performance Summary Table

Method Model Hit ratio
Baseline Decision tree 0.39

User Based Random
forest

0.44

Collaborative
Filtering

Auto-Encoder 0.53

VAE 0.42

5.2 Insights

We find that the most recommended items are Guarantee,
Mortgage, Saving Account, Medium Term Deposit and
Loans.

We assume that our baseline model will always
recommend the most popular item which is the Saving
Account as almost everyone will get a saving account
when opening a new bank account. Then, as the model
needs to recommend products that were not purchased by
the customer before, products like Guarantee, Mortgage,
Medium Term Deposit and Loans which were less
popular among existing customers before are now
surprisingly highly recommended by the recommendation
system to customers.

6. Recommendation Strategy

We come up with hybrid methods to satisfy different
needs of users. For all users, we will first use a baseline
model to recommend the most popular items that are in
trends. Then, we will utilize tree-based models using their
profiles, like age and income to recommend items that
most fit their background. Finally, we will use
collaborative filtering to recommend the potential items
that they may like if they are existing users. Strategy
graph is as below:

Plot 7: Final Recommendation System Strategy

7

7. Limitations & Future Work

One of the most significant limitations with this project is
the lack of enough factors to do causality analysis. The
financial products that customers want to purchase are
highly dependent on other factors as well. For example,
external factors like economic situations or user profile
like occupation. When a fresh graduate first starts
working, he/ she would want to set up a payroll account
first instead of a mortgage. But input data doesn't include
such data.

Another important reflection is that some factors may be
highly dependent. However high correlation does not
mean causality. For example, in order to make a mortgage
payment,one must deposit first then mortgage, but it
doesn't mean we should recommend a mortgage if
someone gets a deposit account.

Also for experiment set up, there is data sparsity issue,
hence it is challenging to make accurate
recommendations, as the model may not have enough
information to learn from.

Finally, a cold-start problem exists for the
recommendation system: new users without any historical
data might not receive accurate recommendations, as the
collaborative filtering method relies on the past behavior
of similar users. But we have collated the different
methods and proposed in section 6 a recommendation
strategy to mitigate this issue.

References

Authors, A. Suppressed for anonymity, 2010.

Duda, R. O., Hart, P. E., and Stork, D. G. Pattern
Classification. John Wiley and Sons, 2nd edition, 2000.

8

