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Abstract 

To break the communication barrier that 
adversely affects the lives and social relationship 
of the growing number of deaf communities, this 
project aimed to develop a sign language 
translation tool that can recognize American 
Sign Language (ASL) gestures and sentences. 
Google - Isolated Sign Language Recognition 
(GISLR) dataset is obtained from Kaggle, and it 
is pre-processed to classify ASL through training 
Neural Network models on labelled landmark 
data extracted. Upon evaluation, the Transformer 
model is identified as the best-performing model. 

1. Introduction 

1.1 Background 

Communication is the foundation of human relationships, 
and it is a tool that enables us to share thoughts and 
connect with others mainly through listening and 
speaking. However, a substantial portion of the world’s 
population lacks this ability. The latest report from WHO 
reveals that over 5% of the world’s population – 430 
million people, will suffer from disabling hearing loss in 
2023. By 2050, this number is expected to jump to 700 
million people (WHO, 2023).  

The deaf-mute community depends on sign language as 
the primary means of communication, and it is the most 
effective and potent way to bridge the communication gap 
and social interactions with the able people. However, 
learning sign language is not a walk in the park. It takes 
on average 2-3 years of regular study and practice to 
achieve intermediate proficiency (Rose, 2023). 

1.2 Problem Statement 

Even though sign language interpreters could help to 
minimize the communication barrier by translating the 
sign languages into spoken words, it is cost prohibitive in 
the long run (The Singapore Association for the Deaf). 
Hence, the deaf community continues to face a lot of 
difficulties and challenges in their daily interactions.  

For instance, research has shown that children who are 
deaf are more likely to be neglected and face greater 
loneliness than their hearing peers (Most et.al., 2012) (Xie 
et.al, 2014), while the adults who are deaf continue to 
face comparatively higher rates of unemployment in the 

workplace (Dammeyer et.al., 2019). Furthermore, studies 
have also shown deafness has prevented individuals from 
accessing proper health care services (Naseribooriabadi 
et.al, 2017).   

To break the communication barrier that adversely affects 
the lives and social relationship of the growing number of 
deaf communities, our team endeavors to create a sign 
language translator tool. Through machine learning, we 
hope to ultimately create a near real time system that 
could recognize individual American Sign Language 
(ASL) gestures and sentences, thereby radically 
improving the accessibility for the Deaf and hard-of 
hearing communities.   

2. Dataset Description 

2.1 Data Source 

The main data source is obtained from Kaggle’s dataset, 
“Google - Isolated Sign Language Recognition” (Google, 
2023). The dataset was originally created by Google to 
identify signs made in processed videos to support mobile 
apps development. 

2.1.1 GOOGLE – ISOLATED SIGN LANGUAGE RECOGNITION 

(GISLR) 

There are several action recognition models available as 
skeleton-based action recognition has achieved great 
success recently (Yang, Sakti, Wu, & Nakamura, 2019). 
Double-feature Double-motion Network (DD-Net) was 
evaluated and compared against GISLR model. This 
project has decided to go with GISLR model as it requires 
less storage, provides better interpretability (Google, 
Hand landmarks detection guide, 2023) and more robust 
in performing under different conditions. 

2.2 Data Overview 

There are 3 files that are obtained from the dataset: 
1. train.csv 
2. sign_to_prediction_index_map.json 
3. train_landmark_files.parquet 

2.3 Data from train.csv 

Each row of data links to a landmark file for training 
purpose. It consists of unique labels, corresponding to the 
label for the landmark sequence. This is a multi-class 
classification training dataset where each landmark file is 
trained to be classified into one of the labels. 
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Table 1. train.csv variables and data description 

VARIABLE DESCRIPTION 

path Path to the landmark file 

participant_id Unique identifier for the data contributor 

sequence_id Unique identifier for the landmark sequence 

sign Label for the landmark sequence 

2.4 Data from sign_to_prediction_index_map.json 

The purpose of the data is to map 250 unique labels for 
the landmark sequence to numerical indices. It is used to 
encode categorical target from text into numerical format. 

2.5 MediaPipe Holistic Solution 

The MediaPipe Holistic pipeline is developed by Google 
to enable live perception of simultaneous pose made by 
human, face landmarks and hand tracking in real-time for 
different life applications (Google, 2023). It can be used 
in applications such as detecting and classifying images, 
recognizing hand gesture and tracking hand 
landmark/poses, image embedding/segmentation, 
classifying and embedding texts and audio files. 

 

 

 

 

 

Figure 1. Example of MediaPipe Holistic  (Google, MediaPipe 

Holistic, 2023) 

It generates a total of 543 landmarks, which consist of 33 
pose landmarks, 468 face landmarks and 21 hand 
landmarks per hand (Google, 2023). An example of hand 
landmarks utilized is shown in Figure 2 below. 

 

 

 

 

 

Figure 2. Hand landmark model showing 21 hand-knuckle 

coordinates (Google, Hand landmarks detection guide, 2023) 

2.6 Data from train_landmark_files.parquet 

This data source consists of all the landmark data, which 
were extracted from raw videos with the MediaPipe 
Holistic model. Each parquet file consists of the variables 
to illustrate a word. This dataset is used to classify 
isolated ASL signs with normalized spatial coordinates of 
the landmark. 

Table 2. train_landmark_files.parquet variables and data 

description 

VARIABLE DESCRIPTION 

frame Frame number in the raw video 

row_id Unique identifier for the row 

type Type of landmark (eg: ‘face’, ‘left_hand’, 

‘pose’, ‘right_hand’) 

landmark_index Landmark index number 

[x/y/z] Normalized spatial coordinates of the 

landmark. They are the columns that will be 

provided to chosen model for inference. 

3. Exploratory Data Analysis 

Exploratory data analysis was performed on the dataset. 
There are 21702 rows of data in train.csv, which consist 
of 250 unique signs, corresponding to the label for the 
landmark sequence.  

Among the 250 unique signs, the most frequent label is 
“duck”, which appeared for 105 times. The top 10 labels 
by row counts are listed in Figure 3. 

 

 

 

 

 

Figure 3. Top 10 labels with highest frequency 

The dataset is examined for missing data. Log-frequency 

of the null values from different types of landmarks are 

shown in Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Log-frequency of percentage of null values for 

different types of landmarks 
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It is observed that there is no missing data in Pose, 
majority of Face data is available, while right- and left-
hand data has similar probability of being unavailable. 

Based on a random sample check from one of the parquet 
files, Figure 5 shows that there are 468 face landmarks, 33 
pose landmarks and 21 hand landmarks for each hand. 
Left hand sometimes has 0 key points captured in a frame, 
suggesting that it is not a dominant hand. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Number of key points by frame and landmark type 

4. Convolutional Neural Network (CNN) Model 

4.1 Data Pre-processing 

Four landmark types are identified from the parquet file, 
i.e., the left hand, right hand, pose and face. Face has 
more than 500 key points, and only lip key points are kept 
as features because other facial features are deemed as 
irrelevant in sign language recognition. Selected features 
are listed in Table 3. 

Table 3. Feature name with its key points index and count 

FEATURE 

NAME 

KEY POINTS INDEX COUNT 

Left hand 468 - 489 21 

Right hand 522 - 543 21 

Pose 502 - 511 10 

Lip 0, 13-14, 17, 37-40, 78-82, 84, 87-

88, 91, 95, 146, 178-181, 185, 191, 

267-270, 291, 308-312, 314, 317-

318, 321, 324, 375, 402, 405, 409, 

415 

40 

 

Since hand gestures are the most important element of 
sign language, the constructed model will consist of only 
the hand movements. x and y coordinates of the hand 
motions were extracted to calculate the variables below 
and z coordinate is ignored first because it is believed that 

the depth will not affect sign language recognition. There 
is a total of 42 input key points from both right and left 
hand.  

Table 4. Processed variables from the parquet file and data 

description 

VARIABLE DESCRIPTION 

n_frame Number of frames in the data 

Keypoints_per_frame Number of keypoints in a frame 

[x.y] 2D coordinates of the keypoint 

Using the landmark indices in the original data as 
reference, the calculated key points are categorized to be 
either a left-handed or right-handed action. Using 
Tensorflow, the next step is to determine the dominant 
hand. In sign language, the dominant hand produces the 
one-handed signs and ‘leads’ in the two-handed signs, 
which is critical for sign language comprehension. 
Through the comparison of the summed absolute 
coordinates of the left and right hand, the hand with a 
greater summed absolute coordinate was deemed to be the 
dominant hand. 

The number of non-empty values in each frame of the 
dominant hand was calculated. After which, the frames 
without the dominant hand were filtered out and the 
indices of the remaining frames was then normalized to 
start with zero. Lastly, the data was either padded or 
repeated to fit into a specified fixed length before it is fed 
into subsequent layers of neural network. 

In overall, the pre-processing steps performs several 
operations to ensure that the input video frames are 
normalized, filtered and adjusted to a fixed length before 
these processed data flows into the neural network.  

Input: (batch_size, total number of keypoints, [x,y] 
coordinates) 

Output: (input_size, dominant side keypoints, [x,y] 
coordinates) 

4.2 CNN Model Architecture 
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The first model chosen was a convolutional neural 

network (CNN) constructed with the TensorFlow library. 

Notably, the softmax function was used in the output 

layer of the classification neural network to normalizes 

the output of the last layer into a probability distribution 

over the various classes. As the probability distribution 

sum up to 1, the softmax functions helps the neural 

network to provide a clear and interpretable prediction of 

the most likely class label for the input.  

Also, categorical cross-entropy loss was determined as the 
loss function. This loss function was designed for multi-
classification task and has been known to be effective in 
training classification neural network, providing a smooth 
gradient for optimization (Cruttwell et.al., 2022). Finally, 
the Adam optimization algorithm was selected as it is 
capable of fast convergence, is well-suited for large 
datasets and high-dimensional parameter spaces. 
Moreover, Adam also uses adaptive learning rates and 
momentum to improve the convergence rate and stability 
of the training process (Cruttwell et.al., 2022). 

4.3 Model Evaluation 

After training for 30 epochs, the CNN model has accuracy 
of 15%, which is approximately 40 times better than 
random guessing among 250 targets. However, the model 
prediction accuracy is still low, which could be attributed 
to the model being unable to capture spatial 
transformations and also insufficient inputs being fed into 
the CNN model.  

Firstly, since the CNN model was not trained to capture 
spatial transformation of the input image, it might 
misclassify an objected after the input image was rotated 
or translated, thereby significantly impacting the accuracy 
of the model. Also, only hand gestures were used as 
inputs in the CNN model, while facial expressions and 
poses were ignored.  Facial expressions and body poses 
are important non-manual features of sign language that 
can convey crucial information about the meaning and 
context of the signs (Pfau & Quer, 2010). For example, 
facial expressions can indicate emotions while body 
postures can convey spatial and temporal relationships 
between signs (Mukushev et.al., 2020). Hence, ignoring 
these features may have resulted in misinterpretation of 
signs, leading to poor model performance.  

With that, the team explored more complex models to 
increase the accuracy of the model prediction. 

5. The Transformer Model 

5.1 Data Pre-processing 

The Transformer model is chosen as the second model to 
be explored and referenced (Wijkhuizen, 2023). In 
addition to the hand landmarks, pose and lip landmarks 
are extracted with three-dimensional coordinates. The 

remaining pre-processing steps are like the previous CNN 
model. 

Table 5. Optimal value for each hyperparameter obtained from 

hyperparameter tuning. 

 CNN MODEL TRANSFORMER MODEL 

Landmark Dominant hand Dominant hand, pose, lip 

Key points 21 66 

Coordinates (x, y) (x, y, z) 

5.2 Transformer Model Architecture 

5.2.1 TRANSFORMER 

In the Transformer model, an Attention Head is defined 
when the Attention module computations are repeated 
multiple times in parallel. Different parts of input 
sequence are split and passes independently through a 
separate Head. Multi-Head Attention model is formed 
when all these similar Attention calculations are 
combined to produce a final score (Doshi, 2021). It takes 
the input sequence as an input and returns an output 
sequence of the same length.  

Multi-head attention allows the model to control mixing 
of information between input sequences which results in 
creating richer representations, increasing machine 
learning task performance (Storrs, 2021). 

5.2.2 EMBEDDING LAYER 

Landmarks are embedded with Landmark Embedding 
Class. It takes in the number of embedding units and 
landmark name. The embedded landmarks are then used 
in the main Embedding Class. The dense layer is 
performed with two fully connected layers with a GELU 
activation function, and the weights of the layers are 
initialized using Glorot Uniform and HE Uniform 
initialization. If a landmark is missing in frame, the model 
will apply an empty embedding for the landmark. 

With the output from Landmark Embedding as its inputs, 
Embedding Class takes in embedded instances for lips, 
left hand, and pose landmarks, and transformed them into 
embeddings, which are then combined into a weighted 
mean using landmark weights. It is then passed through 
two fully connected layers with a GELU activation 
function in between. The result is then combined with a 
learnt positional embedding for the frame to form the 
output embedding of the video input.  

5.2.3 MAIN MODEL  

The main model takes in two tensors as inputs, which are 
frames and non_empty_frame_idxs. The frames tensor is 
a 4-dimensional tensor of shape [batch_size, 
INPUT_SIZE, N_COLS, N_DIMS], while the 
non_empty_frame_idxs tensor is a 2-dimensional tensor 
of shape [batch_size, INPUT_SIZE]. 
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Padding is first applied to the frame using a mask which 
indicates empty frames as 0 and non-empty frames as 1. It 
then applies random frame masking to the padding while 
the final mask will be passed to transformers later. The 
frame tensors are then sliced to extract different parts of 
the input data (lips, left_hand, and pose), normalized, 
flattened, and passed them through an embedding layer. 

The embedded data is passed through a series of 
transformer blocks, followed by pooling and treatment 
with a classifier dropout, before going through the 
classifier. The output of the classifier is a SoftMax 
probability distribution over the number of classes. The 
model is compiled using Sparse Categorical Cross 
Entropy With Label Smoothing as the loss function, 
AdamW as the optimizer, and three metrics: Sparse 
Categorical Accuracy, Sparse Top-5 Categorical 
Accuracy and Sparse Top-10 Categorical Accuracy. The 
full structure of model architecture is attached under 
Appendix. 

Input Tenors: frames, non_empty_frame_idxs 

M
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- Padding + Random Frame Masks 

- Slicing Frames to obtain landmark data 

- Embedding of landmark dataset 

- Transformer using embedding and mask 

- Average Pooling using mask 

- Classifier Dropout 

- Classifier 

Output Model with Cross Entropy loss function and 

AdamW Optimizer 

Figure 6. Summary of Transformer Model Architecture 

5.2.4 HYPERPARAMETER TUNING 

Many hyperparameters listed in the model are arbitrarily 
chosen to get the model running. There are many trade-
offs that need to be made in the choice of the 
hyperparameters.  

5.2.4.1 TRADE-OFF BETWEEN TEST AND VALIDATION 

ACCURACY 

Classifier_dropout, MLP_Dropout (Perception Layer 
Dropout) and Label Smoothing are hyperparameters that 
belong to this category. Classifier_dropout is the dropout 
rate of some target classes in the main model neural 
network, while Layer dropouts determines the dropouts 
between layers in Transformer neural network. Label 
Smoothing is applied to the cross entropy (loss function) 
to adjust the true label to be a weighted average between 
the one-hot encoded true labels and a uniform 
distribution. All of these, if set to 0, can result in the 
model overfitting on training model.  

5.2.4.2 TRADEOFF BETWEEN ACCURACY AND COMPUTING 

CAPACITY (TIME AND COST) 

Max learning rate (LR_Max) is used in conjunction with a 
Learning Rate Scheduler in this neural network training. 
Higher max learning rate will allow the model to have 
faster convergence, however, it might miss out the 
optimal parameter values for accuracy. With limited 
computing resources, we need to choose an optimal max 
learning rate, within the limited number of Epochs for 
training. 

By applying fmin() from hyperopt, the optimal values for 
the four hyperparameters are obtained as shown in Table 
6. Due to limited computing resources, hyperparameter 
tuning needs to be done in two stages, each time with 2 
hyperparameters. It is performed with three epochs and a 
smaller subset of data to avoid prolonged computing time. 
Optimal values are then used in the final training, with 30 
epochs and larger dataset.  

Table 6. Optimal value for each hyperparameter obtained from 

hyperparameter tuning. 

HYPERPARAMETER OPTIMAL VALUE 

Classifier_Dropout 0.144 

MLP_Dropout 0.196 

Label_Smoothing 0.0788 

LR_MAX 0.00183 

5.3 Model Evaluation 

5.3.1 VALIDATION ACCURACY 

Train accuracy increases quickly to >80%, with 
increasing epochs within 10 epochs and only sees some 
slow down around Epoch=30. Validation accuracy seems 
to plateau at around 70%, after Epoch=10. This implies 
that higher epochs tend to overfit the model, without 
increasing its generalization ability facing unseen data. 

  

 

 

 

 

 

 

Figure 7. Model Accuracy of Transformer Model with 

optimized hyperparameters 

For the Top 5 training and validation accuracy, it is 
observed that ~90% accuracy is achieved after 5 epochs. 
It indicates that the model’s top 5 predictions have ~90% 
probability of inlcluding the true target. 
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Figure 8. Model Top 5 Accuracy of Transformer Model with 

optimized hyperparameters 

When compared against the previous CNN model’s 
accuracy (15%) and random guess on 250 possible classes 
accuracy (0.4%), model validation accuracy of 70% 
seems to be more promising. 

Table 7. Comparison of models’ accuracy 

MODEL MODEL ACCURACY 

Random Guess 0.4 % 

CNN 15 % 

Transformer 70 % 

 

5.3.2 EMBEDDING WEIGHTS 

The final Transformer model has the highest embedding 
weights with Dominant Hand (left hand). It shows that 
hand gestures are more important when predicting the 
correct label of sign language, although both lips and pose 
play some part in prediction as well. 

Table 8. Embedding weights for different type of landmarks 

LANDMARK EMBEDDING WEIGHTS 

Lips 29.4% 

Dominant Hand 42.5% 

Pose 28.1% 

 

6. Limitations and Future Works 

In this section, a few limitations in this project will be 
discussed and potential opportunities are identified to be 
explored for further studies. 

6.1 Data Limitation 

There are several limitations from the perspective of the 
dataset itself. The dataset is very huge (30Gb+). Due to 
the limited computing resources, only a subset of the 

original data is utilized in this project for training, even 
with the use of GPU. For future works, full dataset can be 
utilized with better computing resources to further 
improve the existing model architecture. As the existing 
predicted labels are only 250 for full training dataset, 
more computing power is required to improve current 
model and increase the training vocabulary. 

6.2 Model Complexity 

Given the complexity of the transformer model, it takes a 
significant amount of time to train the model (~100 
minutes). This makes it difficult to iterate quickly and to 
experiment with different architectures and parameters. 
Also, with thousands of parameters, the hyperparameter 
tuning also becomes very time-consuming and require 
significant computational resources. In the future, 
automated hyperparameter tuning techniques such as 
Bayesian optimization can be integrated to solve this 
problem.  

Furthermore, interpretability becomes an issue with such 
complex models, making it challenging for users to 
understand how the model are making prediction. The 
sign language translator tools were intended to aid the 
communication between people who are deaf and those 
who are not. Hence, it is important for the model to be 
interpretable so that users can understand the working and 
trust the output of the model. On a more practical note, 
having an interpretable model also helps with debugging 
and troubleshooting, as potential problems can be easily 
identified and fixed.  

6.3 Potential Future Works 

In this project, our final Transformer model can achieve 
validation accuracy around 70% for all labels and 90% for 
Top 5. It shows that there are still room for improvement 
to increase validation accuracy for all labels. Different 
layers within the neural network can be explored. Pre-
trained models such as SignBERT (Hu, Zhao, Zhou, 
Wang, & Li, 2021) can be utilized to enhance the model 
accuracy. 

As our existing model is trained on ASL, future works 
can be done to enhance the model training with other 
public benchmark dataset such as Non-Manual-Feature-
Aware Isolated Chinese Sign Language (NMFs-CSL).  

In this project, word labels are predicted instead of full 
sentences. In real life application, Continuous Sign 
Language Recognition (CSLR) (Sharma, Gupta, & 
Kumar, 2021) would be more practical as it would be able 
to understand the context behind the sign language and 
translate them into complete sentences. Hence, continuous 
model improvement is required to improve user 
experience.  
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7. Conclusion 

In this project, the team aimed to develop a sign language 
translation tool with machine learning, deep learning 
models. By extracting information from images extracted 
from raw videos with Google MediaPipe Holistic model, 
data is classified into 250 labels. 

There are 468 face landmarks, 33 pose landmarks and 21 
hand landmarks for each hand. These landmarks are then 
identified with different embedding weights that play a 
part in the classification predicted labels. 

As the raw dataset is complicated to start with, pre-
processing is performed prior to building the CNN model 
for prediction. Model evaluation on CNN model shows 
that even after training for 30 epochs, it only has an 
accuracy of around 15%. Hence, the Transformer model 
is explored subsequently, targeted to improve model’s 
validation accuracy.  

Transformer model utilized landmarks such as lips, 
dominant hand and pose and consist of 66 key points 
while the previous CNN model only utilized hand 
landmarks, which consist of 21 key points. 
Hyperparameter tuning is also utilized for Transformer 
model to find the most optimal value for hyperparameters 
on the model. As a result, Transformer model has 
achieved >90% training accuracy and ~70% validation 
accuracy after 30 epochs. 

It is also identified that there are certain limitations within 
this project. Data limitation, model complexity and 
interpretability are challenges that the team faced while 
working on this project. However, the team believed that 
this project has laid a strong foundation for future model 
development. Pre-trained models such as SignBERT can 
be explored to further improve on model accuracy and 
increase the vocabulary trained on model by increasing 
the trained dataset language, as well as developing 
Continuous Sign Language Recognition (CSLR) for real-
life application. 
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Appendix – Transformer Model Architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


