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Abstract

This report presents an enhanced book recom-
mendation system to improve recommendation
precision. By integrating unstructured text data
and diverse data sources, the proposed system
offers more robust recommendations tailored to
individual users, ultimately improving user reten-
tion rates.

Utilizing a Goodreads dataset from 2017, com-
prising book information, user-tagged genres, and
user reviews, we built and trained six distinct mod-
els based on different data types. These models
were then combined into an ensemble logistic re-
gression model, outperforming individual models
in precision and exhibiting higher F1 scores in
binary classification for book recommendations.

While the ensemble model requires more compu-
tational resources than the user similarity model,
it effectively mitigates popularity bias, a common
issue in naive recommendation systems. Finally,
the system’s user interface, developed with Flask,
offers transparent recommendations with explain-
ability graphs, enhancing user trust and experi-
ence.

Overall, the enhanced book recommendation sys-
tem shows promising results and has the potential
to outperform the naive user similarity model with
further data refinement and model training.

Codes and sample data can be found at the fol-
lowing link here: https://github.com/
lyncsghrk/BT5153-Books

1. Description of Problem
1.1. Problem Statement

In response to the overwhelming number of book choices
online, which often leads to decision paralysis and wasted
time, we propose the implementation of a Natural Language
Processing (NLP) powered recommendation system to ad-
dress this challenge.

Current recommendation systems in prominent book plat-
forms, such as Amazon or Goodreads, primarily rely on
criteria like ratings and user similarity, often overlooking the
valuable insights embedded within detailed book reviews.
While Goodreads (2011) suggests rating more books to get
better recommendations from their system to form a better
profile of each user, they focus on the numerical ratings and
do not fully utilize the text information (Goodreads, 2011;
Garai, 2022). Thus, users frequently express dissatisfaction
with the inadequacy or lack of personalized recommenda-
tions, as seen from Goodreads (2013; 2020). Furthermore,
such recommendation models commonly suffer from popu-
larity bias, since popular books are more likely to be read
and reviewed by more users, and hence recommended even
to niche book readers. On the other hand, less popular
items are recommended rarely or not at all (Naghiaei et al.,
2022; Pragathi., 2023), which can hurt lesser-known but
potentially good recommendations.

This is a problem found not only in book recommendation
systems but in e-commerce and social platforms alike. For
example, Audible’s (Amazon’s audiobook and podcast com-
pany) recommendation system, has also faced significant
criticism from its 27.3 million monthly users due to subpar
user experience (Allen, 2023).

With over 140 million users in 2022, Goodreads relies on
effective book recommendations to keep users engaged
(Reedsy, 2024). Several market research firms estimate
the global recommendation engine market to reach a total
value between US$28 billion and US$54 billion by 2030, re-
flecting a compound annual growth rate (CAGR) exceeding
30% (Straits, n.d.; Allied, n.d.; Mordor, n.d.), indicating a
great market opportunity here. Offering relevant suggestions
to users is extremely crucial to users, enhancing their over-
all experience, fostering long-term loyalty, and ultimately
increasing user retention rates, and it is therefore crucial
for business growth by improving their recommendation
systems.

1.2. Project Objective

We seek to create an improved recommendation system
that harnesses the power of text-based book reviews along-
side book-related information, to create a more robust and
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fair recommendation system that more accurately mirrors
and predicts books that align with the preferences of actual
readers. This strategy mirrors Spotify’s (n.d.) groundbreak-
ing introduction of the ”taste profile” feature in the music
industry .

To accomplish this, we developed different underlying rec-
ommender models capturing varying aspects of books and
user profiles. Some important book information include
genres, book titles and book descriptions, while examples
of important user information are users’ reviews and liked
books. We then combine the models into one ensemble,
assigning different weights to various models according
to model training against each user’s actual ratings. Our
ensemble model will then be compared against the naive
model using user similarity only, which relies solely on sim-
ple vector similarity searches to find other users with similar
reading behavior and patterns as the target user, and subse-
quently recommending new books from these similar users
to the target user. Model precision is the most important
metric, to ensure the books recommended to the users are
books they will actually be interested in.

Finally, we built a user interface (UI) which accepts user
profiles, and curates a list of recommended books for them.
Our UI focuses on model explainability, giving a breakdown
of why each book was recommended to the user, promot-
ing transparency between our model and the user, thereby
increasing user retention and trust.

2. Dataset
2.1. Dataset Description

The main data source is a Goodreads dataset (Wan, 2017),
consisting of information scraped from users’ public shelves
in late 2017. It contains 2 million books and 15 million re-
views from 465,000 users. We chose this dataset due to
its extensive supplementary book data, which include user-
tagged genres, book descriptions, and author details. The
user-assigned star rating (from 1 to 5) is also provided for
each text review, making it easy to categorize the informa-
tion as well.

There are four main tables in this dataset:

1. Books – Book IDs and associated details of each book,
such as title, number of pages, average rating, number
of ratings, etc.

2. Genres – Book IDs and a column of JSON strings
mapping associated genres (tagged by users, as is
Goodreads’ system) to tag frequency.

3. Reviews – User ID of the reviewer, Book ID of the
book getting reviewed, and associated details of the
review such as review text, rating, date submitted, etc.

4. Users – User IDs and number of reviews made.

2.2. Data Preprocessing

To ensure that the models are effectively run within com-
putational constraints with our available RAM and vCPUs
on our cloud compute instance, we utilized a subset from
the available dataset. We took a subsection of users with
400-500 reviews, which provides us with a balanced rep-
resentation of user engagement while keeping the dataset
within a manageable level of our computing resources. This
still gives us a diverse dataset, with a total of 457,320 re-
views, 1,857 unique users, and 134,172 unique books to
work with.

However, we do acknowledge the current filtering criteria
limit the generalization of our recommender system since
it will work best with users who fulfill this kind of profile.
An improved way of approaching this would have been to
randomly sample users with varying numbers of reviews
to provide a more holistic representation of the entire user
population while keeping the size of the overall data to
acceptable limits. Nevertheless, the current dataset provieds
a sufficiently adequate subset to build the model on without
compromising on quality.

2.3. Data Splitting

To prevent data leakage, it is crucial to ensure the indepen-
dence of the training and testing sets while ensuring they
are representative of the original dataset. Since our rec-
ommender relies on user reviews for personalization, we
first randomly segregate the data by user, ensuring that a
user’s reviews are exclusively allocated to either the training
or testing set, eliminating any potential overlap. However,
models that do not require training such as clustering-based
models will use the entire dataset from the start.

To achieve this, after cleaning the data, we split it into two
sets, sub, and ensemble (or unseen dataset), with a ratio
of 70-30. The sub dataset (70% of data), containing 1,299
users, 320,152 reviews, and 109,296 books, is used to train
our underlying recommendation models, while the 30%
unseen dataset amounting to 558 users, 137,168 reviews,
and 83,075 books is put aside to test the effectiveness of our
ensemble book suggestion model with unseen users. The
ensemble dataset is further split into train and test sets with
a ratio of 80-20 for training and testing purposes. When
performing these splits, the data associated with the users in
the ensemble set is removed from the subset, leading to some
loss of books that our underlying recommender models
do not take into consideration. While we acknowledge
this limitation, in theory, it can simply be mitigated with a
periodic data refresh in a real-world scenario.

Based on the star ratings, we classify each of the user’s
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book reviews into two categories: ratings of 4 and 5 stars
represent good reviews (indicating that the user liked the
book), and ratings 1, 2, and 3 stars represent mixed reviews
(indicating that the user may not have liked the book). We
use this binary classification at a later stage to train the
ensemble model.

3. Methodology
3.1. Machine Learning Models

Our book recommendation algorithm ensembles six unsu-
pervised models to capture various aspects of user prefer-
ences and book characteristics, and these recommendations
will then be combined into an ensemble model. The individ-
ual models are summarized below:

1. Jaccard similarity-based user similarity model to find
other users with similar favored books and recommend
books based on the tastes of these users;

2. Latent Dirichlet Allocation (LDA) to discover topics
from positive user reviews and then match books with
users’ preferred topics;

3. Sentence2Vec to generate vector representations of
book descriptions and recommend books that are se-
mantically similar to the user’s liked books;

4. Word2Vec to generate vector representations of book
genres and recommend books that are similar in overall
themes to the user’s liked books;

5. Huggingface BAAI general embedding (bge)-small-en-
v1.5 to generate vector representations of book titles
and recommend books that are semantically and con-
textually similar to the user’s liked books;

6. Euclidean distance-based similarity on general book
statistics (such as number of pages, book format, etc.)
and recommend similar books as the user’s liked books.

Section 3.2 explores the individual models in detail. Each
model recommends 200 books per target user, which pro-
vides a good trade-off between sufficient level of detail,
as any book recommended past the 200th one is likely to
receive a score nearing zeros, diminishing their relevance,
while still allowing for relatively quick computations with
lesser storage space needed to store all the data.

Following which, Section 3.3 details the training of the en-
semble model weights. This is done via binary classification
for the recommended output of each model against the ac-
tual star ratings given by users, and the results are discussed
in Section 4. Section 5 then explains our recommender
system’s user interface.

3.2. Individual Models

3.2.1. JACCARD SIMILARITY (SIMILAR-USER
CLUSTERING)

The user similarity model (also used as our naive baseline
model) aims to suggest books a user is likely to enjoy based
on the positive book reviews that other similar users have
provided to books via computing Jaccard similarity. This
can be calculated as such:

J(A,B) =
∥A ∩B∥
∥A ∪B∥

=
∥A ∩B∥

∥A∥+ ∥B∥ − ∥A ∩B∥

Based on the books that the target user has left a positive
book review with four or five stars for, we identify similar
users by finding the Jaccard similarity score between the tar-
get user and other users via pairwise comparison, indicating
they have similar tastes in preferred books, and therefore
could enjoy each other’s preferred books. We then identify
the top 20 users with the highest Jaccard similarity score
with the target user, and all their reviewed books with a
positive rating are compiled by adding the score equivalent
to the book’s user’s similarity score. We then select the top
200 books with the highest scores as recommendations.

3.2.2. LATENT DIRICHLET ALLOCATION (USER
REVIEWS)

This model aims to calculate book similarities based on
user reviews. Typically, book similarities are estimated with
book statistics clusters, but reviews are seldom leveraged.
We believe that the language readers use to discuss their
favourite books contain valuable insights. With this model,
we process these reviews to create a list of topics, and then
assign an array of these topics to each book.

We chose Gensim’s Latent Dirichlet Allocation (LDA)
model to process the user reviews due to its efficient han-
dling of large amounts of text data with fewer memory
resources (Huang, 2023) and built-in coherence score func-
tionality (Greer, 2018). To ensure the model learns the
correct keywords, expansive preprocessing is necessary. For
instance, we remove reviews that only contain numbers
and/or whitespace characters, have ’http’ indicating links
to external reviews, are less than 100 characters or are not
in the English language. To further ensure better and more
coherent definitions of each topic, we remove stop words ,
review-specific generic words like ’book’, ’read’, ’review’,
etc. (about 30 such words) identified during the model train-
ing stage, and words with less than three characters. Next,
nltk’s part-of-speech tagging was employed to identify and
remove proper nouns. All reviews are then appended to one
entry per book.

We proceed to tokenize the processed reviews to create a
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mapping of word tokens to unique integer IDs, which is
then transformed into a Bag-of-Words (BoW) representa-
tion. Ultimately, we model 15 topics (and their respective
word distributions) as it gives the highest coherence score.
A higher value of coherence score, which evaluates how
semantically similar the highest-probability words within a
given topic are (Bismi, 2023), results in more interpretable
topics (Roepke, 2022). The results of the modeling can be
found in Figure 1 and Table 1. Hence, we create a fixed vec-
tor of size 15 for each book containing the topic probability
distributions to generate recommendations for a target book.
This is done by calculating the cosine similarity (using co-
sine angle) between the target book and all the other books
in the sub-dataset, which is a measure of their perceived
similarity in content and reader preferences.

Cosine Similarity = SC(A,B) =
A ·B

∥A∥∥B∥

Figure 1. Breakdown of individual model composition

3.2.3. SENTENCE2VEC (BOOK DESCRIPTIONS)

The objective of employing the sentence-to-vector (Sen-
tence2Vec) model is to transform the descriptions of books
into distinctive vector representations. By doing so, we can
leverage the cosine similarity between vectors to identify
books whose descriptions are similar to those preferred by
the user. The Sentence2Vec model is able to capture the
meaning of entire sentences, making it more efficient in
capturing the semantic content of varied length. This makes
Sentence2Vec suitable for application on book descriptions,
which are typically a few sentences long.

The all-MiniLM-L6-v2 model was chosen as it offers
good performance, with a decently fast speed (Reimers,
2024). This model leverages an efficient MiniLM architec-
ture, which is still able to retain most of the understanding
capabilities of the larger transformer-based models like raw
BERT (Reimers, 2024; Grebennikov, 2023).

The model produces normalized output embeddings of 384
dimensions (Reimers, 2024). Consequently, calculating the
cosine similarity between all vectors is computationally in-

Table 1. Topic Words with Weights

Topic Words
0 science, human, question, society,

fiction, body, future, social, ideas,
space

1 murder, case, crime, kill, killer, po-
lice, thriller, solve, dead, detective

2 father, mother, husband, marry, his-
torical, women, daughter, wife, sis-
ter, marriage

3 annoy, guess, hate, bore, okay, half,
wrong, suppose, instead, either

4 town, small, house, water, animals,
dream, island, travel, night, city

5 fantasy, magic, adventure, power,
fight, game, battle, trilogy, kill, ship

6 normal, vampire, ghost, fairy, hu-
man, vampires, witch, evil, magic,
power

7 american, women, white, political,
culture, country, black, slave, soci-
ety, state

8 perhaps, narrative, language, narra-
tor, fiction, prose, graphic, theme,
often, original

9 sweet, sexy, scenes, chemistry, hero-
ine, exchange, hero, chance, roman-
tic, absolutely

10 emotional, tear, pain, emotions,
struggle, death, truly, dark, cry, jour-
ney

11 funny, laugh, humor, hilarious, loud,
entertain, listen, cute, light, music

12 include, information, memoir, per-
sonal, research, essay, provide,
women, christian, cover

13 intrigue, receive, slow, question, ex-
change, develop, excite, future, fast,
unique

14 school, parent, children, kid, high,
girls, mother, adult, child, father
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Figure 2. Elbow curve for Sentence2Vec model

tensive. To solve this, before calculating similarities, we
apply principal component analysis (PCA) that reduces di-
mensionality from 384 to 108 dimensions while retaining
75% of the total variance explained by the original embed-
dings.

To further optimize the computations, we use K-Means
clustering to group books with similar embeddings together.
Determined via the elbow method as plotted in Figure 2,
which involves plotting the variance explained by different
number of clusters and identifying the ’elbow’ point (Saji,
2024), we clustered the embeddings into six clusters. This
tactic reduces runtime since doing pairwise comparisons in
a n

6 × n
6 dimensional space is 36 times faster than iterating

within a n×n space. This method improves the performance
while not compromising on model accuracy, because similar
book descriptions will be close in terms of cosine similarity,
and consequently, it is highly likely that two similar books
are in the same cluster.

Finally, we generate the recommendations for each book ID,
iterating within its cluster only. Like in the LDA model, we
generate recommendations for each of the user’s positively
reviewed books in the sub-dataset via cosine similarity of
the embeddings, and then take the top 200 books with the
highest similarity scores as this model’s recommendations
for a user.

3.2.4. WORD2VEC (BOOK GENRES)

In this dataset, each book has a varying number of genres
tagged by users, with a total of ten different genres to choose
from. The goal of this model is to discover similarities in
books depending on their genres. We convert the genre
information for each book into a list of genre keys using a
Word2Vec model with a vector size of 100 to learn vector
representations for these genres. The objective of this is
to capture the semantic relationships between genres in a
high-dimensional space.This method was preferred over
one-hot encoding as Word2Vec is better able to capture the
relationship between genres. For instance, the genre ’fiction’
is more likely to be related to ’fantasy, paranormal’ than it

Figure 3. Elbow curve for Word2Vec model

is to ’non-fiction’.

We then weigh the embeddings of each array by the per-
centage of times the user has tagged that genre, to scale the
values accordingly, and add the arrays of all genres together
to get the weighted genre vector. An optimisation process
similar to that of the Sentence2Vec model was done here as
well to speed up computation time: With a KMeans clus-
tering method, we group books with similar genre vector
representation. The ’elbow’ point was determined to be six
groups as well as shown in Figure 3. This allows us to only
search the most similar books within the near neighborhood
of a book, which is more efficient than comparing a vector
to all others.

3.2.5. EMBEDDINGS (BOOK TITLES)

For book titles, the hypothesis is that users will want to
read books with similar titles to them. This is because book
titles can often contain niche information, often including
the subject of the book or named characters (”Harry Potter
and the Prisoner of Azkaban”, ”The Lord of The Rings:
Return of The King”), or specific anecdotes (”Think and
Grow Rich”, ”Rich Dad Poor Dad”), or clearly defining
what the book talks about (”Atomic Habits”, ”The Subtle Art
of Not Giving A F*ck”). This information can be captured
inside a vector, and similarity comparison can be done to
find the most similar books.

Based on the Massive Text Embedding Benchmark (MTEB)
leaderboard (Huggingface, n.d.), bge-small-en-v1.5
embeddings were chosen as a text-to-vector embedder. This
is because it is ranked 37th, and while other embeddings
potentially outperform it, it has a decent performance with-
out sacrificing memory usage and model size. Moreover,
since all books in our dataset are English, directly using the
model with English language is sufficient for our use case.

To process book titles for similarity comparisons,
we first convert them into a vector space using
bge-small-en-v1.5. This is done by creating a list of
document objects, where each document contains the book
title and associated metadata, including the book id. These
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documents are then embedded into a high-dimensional
space. To manage and retrieve these embeddings efficiently,
we employ Facebook AI Similarity Search (FAISS), an ad-
vanced library designed for fast similarity searching of dense
vectors compared to other databases such as Chroma and
Pinecone.

The titles are concatenated into a single string in random
order, separated by a new line ”\n”. This is used to do the
similarity search. Then, our algorithm is able to perform
a similarity search for all of the books in the database to
recommend 200 books per user that are the most similar to
their current list.

3.2.6. EUCLIDEAN DISTANCE (BOOK STATISTICS)

This model aims to cluster books by general statistics avail-
able by book:

• Average Rating reflects the overall reader approval and
enjoyment level of a book;

• Number of Ratings indicates the popularity or the
amount of reader engagement a book has received;

• Number of Text Reviews offers insight into how popu-
lar a book is;

• Number of Pages helps in matching books of similar
length or depth;

• Publication Year allows us to recommend books from
similar periods or contexts; and

• Genres provides a basic thematic linking between
books.

While we originally considered book formats as well, books
tend to be produced in more than one format (hardback,
digital, audiobooks). Therefore, it should not be a limitation.
For the preprocessing of genres, the value was calculated as
a percentage of user-assigned tags for that genre over all the
user-assigned tags for each book. The Euclidean distance
between two books was calculated as a metric of similarity.

Euclidean(u, v) =
∑
i

(ui − vi)
2

To ensure standardization with the other models in which a
larger number represents higher similarity, a homographic
function 1

1+x , where x is the Euclidean distance, is applied,
scaling the similarity score between [0, 1]. Similar to the
genre, description, and reviews models, our algorithm then
does book-wise comparisons and outputs the top 30 most
similar books.

3.2.7. OUTPUT STANDARDIZATION

With all our underlying models in place, we then proceed
to compile their recommendations. Out of the six models,
two (user similarity and title embedding) take in target users
as inputs, while the other four (genre embedding, reviews
embedding, description embedding and clustering of general
book statistics) take in target books as inputs.

Therefore, to convert the four models to take in target users
as inputs as well, for each target user, we run the algorithm
with all the positively rated books (denoted by star rating
of 4 or 5). The algorithm then calculates the total similarity
score for each book based on the user’s previously reviewed
books, normalizes these scores by the number of books
reviewed, and then selects the top 200 books with the highest
normalized scores for each user, compiling these into a
consolidated DataFrame.

The output of each of our six underlying models is then fed
into a supervised ensemble model, which is then used for
determining the appropriate model weights.

3.3. Ensemble Model

After we generate the similarity score and recommended
books for all users for each of the six models, we merge
them together to form a final recommendation output for
each user. The main objective is to determine the weightage
of each individual model for the best results, as well as to
compare the performance of individual models against the
ensemble model.

For model training, we used the sub-dataset used to train
the additional models with unseen training data, summing
to 94% of the entire dataset (1,745 users). The remaining
testing dataset (6% of the entire dataset, or 112 users), is
used to validate and choose the best model.

In reality, the metric to be used for model training and
validation is click-through rates of whether users like the
recommended books or not. However, since we are unable
to do so, we take the user’s reviews as an indication of
whether they would have been inclined to click on and
accept the recommended book. Hence, the ratings of 4 and 5
are mapped to positive sentiment of the book (binary = 1),
and ratings of 1, 2 and 3 are mapped to negative sentiment of
the book (binary = 0) by each respective user. Therefore,
during the model training stage, the six models intentionally
do not exclude recommending books that have already been
read by each user, but they will be excluded in our final
product. This reduced the training and testing set by 86.63%
and 87.47% respectively. Nevertheless, there is still a decent
dataset of 229,786 and 13,296 rows in the training and
testing set respectively.

However, each model stores 200 recommended books per
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user to reduce the computation time and space required, but
there are 109,296 books in the subset. Hence, it leads to a
very sparse matrix, as shown in Figure 4.

Figure 4. Breakdown of individual model composition

90.03% of recommendations are only recommended by one
model, 8.77% of recommendations recommended by two
models, and only 0.55% are recommended by three models.
The user similarity model heavily dominates the dataset as
well, with 84.51% of the training sets respectively consisting
only of books recommended by the user similarity model.
This is likely because Goodreads, where the dataset came
from, recommends books based on user similarity modeling,
possibly in an algorithm similar to ours. Hence, it is logi-
cal that user similarity will account for the bulk of books
reviewed.

Furthermore, all NaN values caused by not all models hav-
ing suggestions for all rows were replaced with 0.

In our case, it is important to ensure the books that are
recommended are books that users will enjoy and leave good
reviews for. Hence, precision, which measures the accuracy
of positive predictions, is the most important metric.

We used Python’s Scikit-Learn library. We first applied Stan-
dardScaler to standardize the training data. Then, several
classification models were tested, including Linear Support
Vector Machine Classifier (Linear SVC), Logistic Regres-
sion (with balanced classes), Ridge Classifier and Stochastic
Gradient Descent Classifier. The metrics of each model is
available in Table 2.

Out of these, LinearSVC and Logistic Regression performed
the best, with the highest precisions of 0.856 and 0.855 re-
spectively. Hence, we decided to use Logistic Regression
as our final model, as it performs better on other metrics,
with a higher accuracy, indicating the model’s performance
is closer to the true value. Logistic Regression is also highly
explainable, which is one of the objectives of our recom-
mendation system as well.

Table 2. Metrics for each candidate model
Model Accuracy Precision

SGDClassifier 0.734582 0.735869
RidgeClassifier 0.734883 0.741674

LogisticRegression 0.670126 0.854682
LinearSVC 0.667043 0.855965

Model Recall F1
SGDClassifier 0.997035 0.846772
RidgeClassifier 0.981391 0.844857

LogisticRegression 0.664519 0.747699
LinearSVC 0.658078 0.744089

4. Discussion of Result
4.1. Comparison with Logistic Regression on Individual

Models

Table 3. Coefficients for each candidate model
Model naive rev desc

SGDClassifier 0.009377 0.014328 -0.119328
RidgeClassifier 0.273136 0.017124 0.003939

LogisticRegression 0.868651 0.073475 0.018187
LinearSVC 0.377111 0.031524 0.008723

Model genre title book
SGDClassifier -0.000777 0.006737 0.040987
RidgeClassifier 0.080223 0.110881 0.005648

LogisticRegression 0.295762 0.335316 0.017975
LinearSVC 0.120624 0.145180 0.007777

For Table 3, we map the column names to these models:

• naive – User similarity model

• rev – Review LDA model

• desc – Description Sentence2Vec model

• genre – Genre Word2Vec model

• title – Title embeddings model

• book – Book statistics similarity model

As seen from Table 3, for logistic regression, user similarity
(column naive) has the highest coefficient of 0.8687, in-
dicating it could be the most important model of the six. On
the other hand, the model using general book statistics (col-
umn book) to calculate Euclidean distance has the smallest
coefficient of 0.01798, hence it is the least important model.

However, the high weightage of the user similarity model
could be due to 92.80% of the training rows having data
for the user similarity model, while for the other columns,
the matrix is decently sparse. For example, for Euclidean
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distance between general book statistics, only 0.36% of
training rows have data for this model. Therefore, the lo-
gistic regression model could have regarded this model as
less important, while overstating the importance of user
similarity score.

Due to the good performance and boons of Logistic Regres-
sion as described in Table 2 and the following paragraph, we
have decided to go ahead with using Logistic Regression
as the main classification model for our ensemble model.

4.2. Coefficients of Candidate Models

Table 4. Metrics of each individual model (Logistic Regression)

Model Accuracy Precision
User similarity 0.687876 0.847445
Review LDA 0.304302 0.806713

Description Sentence2Vec 0.734582 0.735869
Genre Word2Vec 0.298135 0.790909
Title embedding 0.726233 0.737543
Book similarity 0.735560 0.735701

Model Recall F1
User similarity 0.702045 0.767923
Review LDA 0.071268 0.130966

Description Sentence2Vec 0.997035 0.846772
Genre Word2Vec 0.062270 0.115450
Title embedding 0.974642 0.839676
Book similarity 0.999591 0.847581

Doing an analysis of the performance of individual mod-
els, it can be seen that in terms of precision, our ensemble
outperforms all individual models. In particular, comparing
it against our naive model of user similarity-based recom-
mendation, our ensemble model achieves a higher precision
of 0.8547 compared to the naive model with a precision of
0.8474. While it should also be noted that using other met-
rics such as accuracy, the naive model does perform slightly
better (accuracy scores of 0.6701 for ensemble model versus
0.6879 for naive model), these differences can be attributed
to the overwhelming data size of the user similarity model,
which may lead to minor fluctuations in performance met-
rics.

Looking at recall, which indicates how good the model is
at correctly identifying positive instances, it is interesting
to note that review embedding and genre embedding have
very low recall of 0.0713 and 0.0623 respectively. The low
recall rates for the review embedding and genre embedding
models suggest that these models are missing a significant
number of positive instances, which can be problematic if
correctly identifying positive instances is a priority.

F1 score is the harmonic mean between precision and re-
call, measures the reliability of a machine learning model.

It is commonly used to measure performance of binary
classification. Description embeddings, title embeddings
and general book data have significantly better F1 scores
(0.8468, 0.8397 and 0.8476 respectively) than the naive user
similarity model’s F1 score of 0.7679. Therefore, they are
important in ensuring that while the recommendation sys-
tem does not return books that users will not enjoy, they
should not skip past too many books that users may enjoy
as well, thereby increasing model robustness.

4.3. Ease of Computing

Comparing the computational resources required for each
model, the ensemble model is computationally intensive due
to several factors. Firstly, it requires training and storing
embeddings for the four models that utilize embeddings.
This process is resource-intensive and time-consuming. Ad-
ditionally, four of the models in the ensemble require ac-
cessing recommended books for each target book, which
further increases the computational load and training time.
In contrast, the naive user similarity model is much more
lightweight. It can be computed rapidly in real-time for
each user request, making it suitable for dynamic updates
and ensuring that it is always up-to-date. Overall, while
the ensemble model offers superior performance, it comes
at the cost of increased computational resources and time.
However, it should be noted that once trained and stored,
the ensemble model does not require many computation
resources, and an occasional refresh of the meta-deta is
sufficient to overcome this limitation.

4.4. Popularity Bias and Other Drawbacks

As mentioned in Section 1, one big limitation of the naive
user similarity model is its tendency for popularity bias. We
tested this hypothesis using recommendations in our test set.
Using the count of text reviews per book, we generated the
top 20 most popular books. Similarly, we generated the top
20 most recommended books by the ensemble model and
user similarity model respectively. Of the top 20 most rec-
ommended books by the ensemble model, 9 were among the
20 most popular books, while 10 of the top 20 most recom-
mended books by the naive user similarity model were also
among the 20 most popular books. Hence, we can conclude
that the user similarity model is more likely to recommend
books that are popular and appear more on user’s shelves,
and is hence prone to popularity bias. However, our ensem-
ble method addresses this challenge without distorting the
recommendations. This is because it incorporates recom-
mendations based on various information sources beyond
user similarities, such as book descriptions, titles, genres,
text reviews, and book statistics. This broader range of data
helps to mitigate the popularity bias and makes our model
robust.
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Beyond the naive user similarity model, other individual
models have their individual drawbacks as well. For ex-
ample, the title embedding model may recommend irrel-
evant books based on superficial keyword matches (e.g.,
”When Breath Becomes Air” vs. ”Avatar: The Last Air-
bender”). Likewise, a model that heavily relies on review
embeddings could struggle with sarcasm, potentially recom-
mending works entirely different from the user’s preference.

All in all, the ensemble method improves robustness by miti-
gating individual model biases and fostering a broader, more
user-centric approach to book recommendations. This is
also why explainability in our models are extremely crucial,
to allow users to understand why each book is recommended,
and for us to ensure the model does not have inherent biases.

5. Recommender System User Interface
To provide the user with an intuitive way to check the rec-
ommendations, we have created a user interface in Flask:

• Home Page – As shown in Figure 5, recommendations
are initially generated using a test dataset. Once loaded,
a new page displays users and a few of the books they
have read, as shown in Figure 6. This allows the app
user to better understand the readers taste profile.

• Viewing Individual Users – Clicking on a specific
user takes you to a new page as shown in Figure 7,
listing the model’s recommendations for that user, pre-
sented as a book list, ordered by importance according
to our ensemble model.

• Understanding Recommendations – Clicking the
”Explain” button provides insights into why particular
books are recommended. Since our ensemble model
uses linear regression, we leverage the model coeffi-
cients for this task. A waterfall chart, as shown in
Figure 8, will then be displayed, highlighting the im-
portance of each variable used in the recommendation
process.

This interface serves as a proof of concept for both business
users and readers. Business users gain a comprehensive
understanding of why specific books are recommended, pro-
viding valuable insights into user preferences. We also

Figure 5. Recommender System UI Homepage

Figure 6. Test users and 5 of their favorite books

Figure 7. Viewing individual users

believe that click-through rates are likely to increase, since
readers will be more compelled to explore suggestions if
they come with a valid reason or explanation. This explana-
tion makes the user interface more transparent and fosters
trust in the recommendation system.

5.1. Explainability

The logistic function is as follows:

p(x) =
1

1 + e−(β0+β1x1+β2x2+...)

In our ensemble model’s final classifier, the vector of all
sub-model’s confidence scores (that a given book is a good
recommendation) is x. The vector of corresponding coeffi-
cients is then β, where the intercept is β0.

The values in the waterfall chart are each sub-model’s scores
multiplied by their coefficient in the Logistic Regression
model, βixi. Due to the linearity of the Logistic Regression
model, these values conveniently represent the impact of
each sub-model on the ensemble model’s final score.
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Figure 8. Understanding recommendations

6. Limitations and Future Work
Our book recommendation model, while effective in many
respects, has certain limitations that should be acknowl-
edged to better understand the outcomes and discover po-
tential areas for future improvement.

As stated in Section 2.3, using a limited subset of data
to avoid data leakage means that about 30% books in the
dataset were excluded, and cannot be recommended. This
exclusion potentially limits the diversity and range of book
recommendations. A possible solution, since the weightage
of each model has been determined, is to redo this process
with all the books in the dataset, and adjust the weightages
via other methods like click-through rates by actual users.

Currently, we use a single type of data to train our model.
For example, we have one model for titles, and another for
description. This is mainly because of computation resource
limitations, and the selected model is the most suitable for
that specific type of data. However, integrating multiple
subsets could potentially improve the robustness and accu-
racy of our recommendations. Combining models trained
on different subsets of data could capture a broader range
of user preferences and book characteristics, and improve
the overall performance of our recommendation system.

The model currently struggles with the cold start problem
for new users without a review history, for which we will
be unable to give accurate recommendations. Ideally, as
a future workline, we want to integrate demographic and
psychographic data into the initial user profile setup, which
could offer a preliminary basis for personalization. This
approach would improve our model’s ability to serve new
users effectively from their first interaction. However, we
currently lack access to this type of information and new
data sources should be searched in the future.

Another important limitation is that our model does not use
authors’ data. Given that many readers have preferences
not only for specific genres but also for the writing styles
of certain authors, this could be a critical problem. In the
future, including information about authors in the model
could improve its personalization capabilities since it would
allow for recommendations that consider the user’s pref-

erence for books by particular authors or within specific
literary schools. Additionally, we could improve our book
information database by scraping data from external sources.
Potential additions might include awards won, appearances
in thematic blogs or Subreddits, or the number of mentions
on Twitter.

7. Conclusion
In this report, we explore how Natural Language Processing
(NLP) can transform book recommendations for platforms
like Goodreads. We aim to overcome limitations of current
systems by analyzing text details from unstructured text
data like book reviews, titles or descriptions, allowing us to
analyze user data and book features from different angles,
enriching the recommendation process. Through careful
data preparation and various machine learning models, we
build an ensemble model, which we evaluate using holistics
factors such as precision, computational resources required
and model robustness.

Overall, while our ensemble model performs better than the
naive user similarity model that Goodreads currently uses in
terms of precision, it performs worse on other metrics such
as f1 score and accuracy, and requires more computation
resources. However, while we acknowledge the user sim-
ilarity model gives decent results, our ensemble increases
model diversity and robustness, reducing the fundamental
popularity bias in user similarity model, which is extremely
important in an environment where users are looking for
increasingly niche books.

Furthermore, we believe that with further training, espe-
cially via users rating the books that we have recommended
to them, we are able to improve the model training, where
the target data is currently extremely imbalanced and primar-
ily consists of user similarity data. Future work could entail
expanding the data, including more user and book metrics,
and using higher volumes of data. Ideally, in the future, we
will also deploy various ensemble models in production and
gather real user feedback.

The potential to integrate this system into real-world applica-
tions is exciting. Once deployed, continuous updates based
on user feedback will be crucial for ongoing improvement.
This project lays a strong foundation for further research
and development in personalized book recommendations,
leading the way for a more enjoyable book discovery expe-
rience.
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