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Abstract

The primary objective of our project is to train
an image detection model capable of augment-
ing medical professionals’ diagnostic accuracy
for the early and precise detection of brain tu-
mours. To achieve this, we intend to evaluate and
refine serveral machine learning models such as
Vision Transformer, U-Net & DenseNet-121, and
YOLO using a pre-labelled brain tumour MRI
scans dataset. This report will provide insights
into the methodology, challenges and potential im-
pact of this project, demonstrating its significance
in in supporting and augmenting decision-making
processes in medical diagnostics.

1. Dataset Overview
1.1. Pre-labelled MRI Brain Tumour Image Dataset

For this project, we will be using compiled pre-labelled
MRI brain tumor MRI scans dataset (Rostami, 2024) fea-
turing four tumor classification: pituitary, meningioma, and
glioma, along with non-tumorous scans. The MRI scans
have been labeled by medical experts using a standardised
labeling protocol and include the type of tumor and the
bounding box coordinates of the tumor. The dataset in-
cludes 2,443 MRI images and the images are resized to
640x640 (Stretch).

Class 0 Glioma tumor: Shows tumors originating in brain
support cells, varying from slow-growing to aggressive, with
symptoms like headaches and cognitive changes.

Class 1 Meningioma tumor: Depicts tumors arising from
brain membrane, often benign and may cause headaches or
neurological symptoms.

Class 2 No tumor: Images without any tumors, used for
comparison and evaluating model performance.

Class 3 Pituitary tumor: Represents benign tumors in
the pituitary gland causing symptoms like headaches and
hormonal imbalances.

1.2. Bounding Box Coordinates Conversion

As some of our models do not support bounding box coordi-
nates, we need to use these coordinates to manually convert
them into a rectangular masks, to enable us to maintain the
tumor locations across all models.

1.3. Data Preprocessing

In the Pre-labelled MRI Brain Tumour Image Dataset (Refer
to Figure 1), it includes 1,695 training images, 502 valida-
tion images, and 246 test images, each annotated with the
tumor type and location. As the training set contains an in-
adequate number of samples to effectively train a deep CNN
architecture, data augmentation is employed to address this
limitation.

Train Class Statistics Valid Class Statistics Test Class Statistics
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Figure 1. Overview of Classes in Train-Test-Split Datasets

1.4. Data Augmentation

By using this approach, a larger dataset can be generated
without the need for additional data collection. In this
project, we carried out the following data augmentation
techniques:

¢ Rotate: Random rotations between -10° and 10°, to
mimic head tilting and rotation.

 ShiftScaleRotate: A combination of shifting and scal-
ing (without rotate), for robustness against positional
and size variations.

* HorizontalFlip: Flips the image horizontally (left to
right).

¢ ElasticTransform: Elastic transformations, introduc-
ing non-linear deformations for mimicking real-world
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scan inconsistencies.

Table I illustrates the distribution of images across classes
within the training and validation set before and after the
application of data augmentation. We initially observed a
class imbalance, with Class 0: Glioma tumor having more
samples compared to Class 2: No tumor. Despite the data
augmentation, we chose to maintain the imbalance because
detection of Glioma tumor (Class 0) requires urgent clinical
intervention due to its aggressive nature, and we need to
ensure our model is especially sensitive in detecting them.

Table 1. Distribution of classes within the dataset before and after
implementation of data augmentation within the training and vali-
dation set.

Train Set Validation Set Test set
Before aug.  After aug. Before aug.  After aug.
Class 0 564 1128 161 322 80
Class 1 358 716 124 248 63
Class 2 335 670 99 198 49
Class 3 438 876 118 236 54
TOTAL 1695 3390 502 1004 246

2. Machine Learning Models for Brain Tumor
Classification in MRI Scans

This section explores the application of machine learning
models for classifying brain tumors in MRI scans highlight-
ing the strengths of these models for medical image analysis.
Specifically, we have chosen a set of diverse models, namely,
“Vision Transformer (ViT)”, combined “U-Net & DenseNet-
1217, as well as “You Only Look Once (YOLO)”.

2.1. Image Recognition Expertise

Deep learning models, including Convolutional Neural Net-
works (CNNs) and Vision Transformers (ViTs), excel at
image recognition tasks due to their architectures designed
for analysing visual data. These models can identify crucial
details within MRI scans and distinguish healthy tissue from
tumors. Studies have demonstrated their effectiveness in
disease detection and classification across various imaging
modalities, including MRI scans. This established success
highlights their potential for brain tumor classification.

2.2. Automated Feature Extraction

Both CNNs and deep learning models like ViTs can auto-
matically learn relevant features from MRI data, eliminating
the need for manual feature engineering, a complex and
time-consuming process. This allows them to adapt to the
specific characteristics of brain tumors in scans.

To ensure a fair comparison, we will evaluate all models on
a common set of metrics commonly used in medical image

analysis (Hicks et al., 2022) for classification tasks.

By evaluating these diverse models on this common set
of metrics, we aim to identify the one that achieves the
best overall performance in classifying brain tumors using
MRI scans. This model will then be further explored for
potential enhancements in tumor detection and classification
capabilities.

* Precision: The proportion of correctly identified tu-
mors among all predicted tumors.

* Recall: The proportion of actual tumors correctly iden-
tified by the model.

¢ F1 Score: A balanced measure of precision and recall,
providing a single score for model performance.

3. Model 1: Vision Transformer

Vision Transformer (ViT) is a deep learning model for image
recognition tasks (Refer to Figure 3.1). Unlike traditional
Convolutional Neural Networks (CNNs) that process images
through convolutions, ViT breaks an image into smaller
patches, converts them into vectors, and feeds them into a
Transformer encoder.

In our task, MRI scans often show subtle variations in tissue
contrast that can be crucial for tumour identification. ViT’s
self-attention mechanism and transformer architecture al-
low the model to learn long-range dependencies between
different parts of the image, which is crucial for accurate
image classification and object detection. The original archi-
tecture of the Vision Transformer, however, does not have
the specific capability to conduct image segmentation task.
Despite that, due to the flexibility given by the ViT structure
as well as the unique trait in understanding distant part of
the image, we believe that this model has a great potential
to locate and identify tumour effectively.

Therefore, to achieve our classification and segmentation
goals, we designed and added 2 linear layers—classification
head and bounding box head to output the class labels and
coordinates. Through this modification, we empower this
model to predict the location of the tumour, without the
configuration of detailed image segmentation.

3.1. ViT Architecture

Image Patching: The input image is split into fixed-size
patches (in our case, 224x224 pixels each).

Embedding: Each patch is flattened and projected into a
higher-dimensional space via a trainable linear transforma-
tion. Positional embeddings are added to retain positional
information of the patches.
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Figure 2. Vision Transformer ViT Architecture https://viso.ai/deep-
learning/vision-transformer-vit/

Transformer Encoder: The sequence of embedded patches
passes through multiple layers of the transformer encoder.
This encoder uses a self-attention mechanism to learn re-
lationships between different parts of the image, captured
in the patch vectors. Through multiple encoder layers, the
model progressively builds a global understanding of the
image.

Output Layers: Depending on the task, the final layers of
the ViT can vary. For image classification, a linear layer
takes the final encoder output and predicts class probabil-
ities. In our project, because the given data also provides
the information of the tumour location in each image, we
designed our own ViT model and extended this concept by
adding another linear layer to predict bounding box coordi-
nates for object detection tasks.

3.2. Evaluation of Vision Transformer

To explore and achieve a satisfying performance of ViT
model in this task, we trained the model with different set-
tings. We started by utilizing a pre-trained vit-base-patch16-
224 model. The pre-training on a large image dataset allows
the model to learn powerful image feature extraction ca-
pabilities. These capabilities can then be adapted to the
specific task of tumor segmentation and classification in
MRI scans, even with a potentially smaller medical image
dataset.

We first want to demonstrate the transfer learning capability
of this model, and after training with 10 epochs and learn-
ing rate le-3, we achieved F1 score 0.409, precision score
0.428 and recall 0.400 (Refer to Table 2). We noticed that
the performance was not good as expected, considering the
advantages discussed above. Thus, a detailed finetuning
process was conducted to this model. We freezed all layers
in the model, and re-trained our model by updating the pa-
rameters of the two newly designed heads for classification
and bounding box identification. After the same 10 epochs

training, we achieved F1 score 0.791, precision score 0.824
and recall 0.772. The finetuning process greatly improve the
model performance, and demonstrate the transfer learning
capabilities of the ViT model. To further improve the per-
formance of the ViT model, we also explore the option of
replacing Adam optimizer with AdamW, an optimizer that
is often recommended for fine-tuning pre-trained models
because of its improved handling of weight decay. After im-
plementing the new optimizer, we acheived F1 score 0.837,
precision score 0.859 and recall 0.822.

Table 2. Evaluation of Vision Transformer

Model F1 Score  Precision  Recall
ViT, 10 epochs, Adam 0.409 0.428 0.400
ViT, 10 epochs, frozen layers, Adam 0.791 0.824 0.772
ViT, 10 epochs, frozen layers, AdamW 0.837 0.859 0.822

While a great improvement was achieved by freezing layers,
it is worth noting that the training precision is less than
test precision. Therefore, there is reason to believe that our
model is overfitted. Despite that, there is gradual improve-
ment of the model performance after the modifications of
the training process were implememnted as listed in the
table above.

The results indicate a significant improvement in all metrics
when the backbone of the Vision Transformer is frozen dur-
ing the initial training phase. It might indicate that freezing
the pre-trained layers helps in preserving the learned fea-
tures, which are generally useful for visual recognition tasks.
It seems that allowing these features to remain stable while
only the newly added heads (classification and bounding
box) are trained helps the model to adapt better without
being overwhelmed by too many changes at once.

Changing the optimizer from Adam to AdamW leads to an
improvement in all performance metrics (F1 score, preci-
sion, and recall), albeit the loss remains nearly unchanged.
AdamW modifies the way weight decay is handled, which
can lead to better generalization by decoupling the weight
decay from the learning rate schedule. This often results in
more stable and effective training, particularly for complex
models like transformers.

4. Model 2: U-Net and DenseNet-121

Given the nature of our project, we also explored two neu-
ral network models which are widely used in the medical
imaging field.

In medical imaging workflows, image segmentation typi-
cally precedes classification, where potentially tumorous
areas are first delineated and isolated. Once the MRI images
have been segmented, classification is then performed to
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identify and classify specific tumours within the areas of
interest. This approach ensures that the focus is narrowed
down to only the most relevant areas of an MRI image,
thereby allowing for more accurate diagnoses.

For our project, we utilized U-Net for image segmenta-
tion and DenseNet-121 for image classification, and imple-
mented these models using the Medical Open Network for
Al (MONAI) library. MONALI is a PyTorch-based frame-
work that provides tools and pre-trained models which are
robust and specifically tailored for medical imaging tasks.
By leveraging MONAI, we hope to leverage field specific
tools and reduce the need for additional configuration.

U-Net was originally designed for medical imaging segmen-
tation and is known for its exceptional ability to capture fine
details, contexts, and patterns. On the other hand, DenseNet-
121 is highly efficient in classification tasks due to its dense
connectivity, feature propagation and reuse. These models
are particularly well suited, well adopted and well liked for
medical imaging.

4.1. U-Net Architecture

U-Net is an encoder-decoder convolutional neural network
that has a symmetric architecture (Refer to Figure 4.1). It
utilizes a series of contracting (encoder) and expanding (de-
coder) paths to capture context and enable precise localiza-
tion respectively. The contracting path consists of repeated
applications of two 3x3 convolutions (each followed by a
rectified linear unit (ReLU) and a 2x2 max pooling opera-
tion with stride 2 for downsampling. At each downsampling
step, the number of feature channels is doubled. The expan-
sive path is done in reverse sequential order and reconstructs
the original resolution. Put together, the features captured
in the contracting path are integrated during the expansive
path, thereby enabling accurate segmentation of medical
images.

For our model, we used Parametric Rectified Linear Unit
(PReLU) as our activation function, as it introduces non-
linearity in order to learn more complex mappings between
input and output segmentation masks, which is beneficial
for medical imaging. PReLU is also known to mitigate the
vanishing gradient issue and to improve convergence. In
addition to Binary Cross Entropy loss function, we also
tested the Dice loss function due to its prominence in medi-
cal settings, its ability to handle class imbalances and small
objection detection tasks.

4.2. DenseNet-121 Architecture

DenseNet-121 comprises 121 feed-forward layers which
have high information flow thereby creating very deep and
dense connections in the network (Refer to Figure 4.2). This
dense connection encourages enhanced feature reuse and
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Figure 3. U-Net Architecture

mitigates the vanishing gradient problem. This enables
DenseNet-121 to capture intricate details and patterns in
MRI scans even with limited datasets (as is typical in medi-

cal settings).
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For our model, we used Cross Entropy Loss as the standard
default loss function and also for its ability to handle class
imbalances.

4.3. Evaluation of U-Net and DenseNet-121 Models

To establish a baseline, we trained both models for 10
epochs at a fixed learning rate of le-3, no further tuning
beyond the above-mentioned was performed. The results
indicated that U-Net’s performance was consistent and bal-
anced across all three metrics F1, Precision and Recall
around 0.819, but IoU was only moderately good at 0.693.
DenseNet-121’s results were slightly lower than U-Net ex-
cept Precision (Refer to Table 3).

Both false positive and false negative diagnoses have sig-
nificant consequences for patients, thus it is important to
minimize false negatives for segmentation and minimize
false positives for classification. Considering our baseline
results and their implications for medical imaging work-
flows, we can infer one of two things.
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» U-Net’s higher recall suggests that it is better at min-
imizing false negatives i.e. minimizing cases which
are tumorous but marked as benign. This makes U-Net
more suitable for applications like image segmenta-
tion where, due to its role as a preliminary step before
classification, makes it even more crucial to accurately
delineate all potential areas of interest.

* DenseNet-121 demonstrated slightly stronger results
in Precision, suggesting that it is more effective in min-
imizing false positives. This attribute makes DenseNet-
121 more suitable for applications like image classifi-
cations where it can better distinguish between tumor
cases e.g. glioma, pituitary, meningioma and benign.
This in turn can help to improve the efficacy of the
treatment plan and reduce over-diagnose or unneces-
sary medical interventions.

4.4. Optimising UNet and DenseNet-121

Due to computational resource constraints, it was important
that we strategically prioritized and implemented only high
impact optimization techniques. The following fine-tuning
techniques were implemented:

¢ Optimizer change from Adam to AdamW: We opted
for AdamW over other optimizers like Adam (our base-
line) and Stochastic Gradient Descent (SGD), due to its
adaptive learning capabilities even for complex models,
and its ability to self regularize; thereby reducing over-
fitting more effectively. This was particularly benefi-
cial to us due to our fairly limited dataset and gave us a
chance to build-train models that realistically simulate
real-world medical imaging workflows where excellent
generalization is expected despite limited training data.

¢ Learning rate scheduler with gamma = 0.9: e im-
plemented an exponential learning rate scheduler to
allow us to efficiently and systematically test the ef-
fects of various learning rates on the training process
and model convergence. The decay rate was set at 0.9
to allow for a modest and gradual reduction in learn-
ing rate, given that we only ran 10 epochs for model
training.

* Minority class weighting in BCE loss function for
U-Net: During fine-tuning, we observed that despite
implementing the above two changes, the U-Net model
continued to fail at learning during initial epochs e.g.
no validation scores for epochs 0 to 2. This could have
been due to the high class imbalance of benign classes
(j 20% of total samples) in our train dataset. Hence, we
weighted the “no tumor” class in order to counteract
this class imbalance and increase U-Net’s sensitivity
to tumor segmentation.

¢ Warmup scheduler for U-Net for epochs 0 and 1:
To further aid the learning process during the initial
training phases, we implemented a custom warmup
scheduler. The custom warmup scheduler prevents the
model from “settling down” too quickly at the start, and
when paired with the learning rate scheduler, it grad-
ually increases the learning rate from a significantly
lower initial value to the intended learning rate over
the first two epochs. Starting with a lower learning
rate helps to stabilize the training process and prevents
premature convergence (overfit); this is another fea-
ture that is well-suited for medical imaging since input
images can vary in quality and structure.

We also evaluated how the best models were identified and
saved from the training epochs by looking at the minimum
validation loss and the maximum validation F1 score over
all epochs. Once again, given our relatively small and highly
unbalanced dataset, we determined that prioritizing maxi-
mum validation F1 score would be more effective for U-Net
and DenseNet121. F1 is a balanced measure of recall and
precision and is well suited for medical imaging as a high F1
score indicates that the model adequately recognizes even
rare but critical conditions without punishing false positives.
Conversely, low validation loss can be skewed by class im-
balances and majority classes (as is the case for our dataset);
in real life this means that less common tumors might not
be detected.

After fine-tuning, we observe that DenseNet-121 responded
extremely well just by changing the optimizer and imple-
menting a learning rate scheduler, achieving almost a near
perfect label agreement with an F1 score of 0.961 (Refer
to Table 3). Similarly, U-Net also performed at its best by
changing the optimizer and implementing a learning rate
scheduler, achieving an F1 score 0.841 and IoU of 0.725.
Also, U-Net’s F1 and Precision decreased with complex fine-
tuning strategies, but Recall benefitted greatly; this could
suggest that the weighted BCE loss and warm-up strategies
potentially caused overfitting to the minority class causing
highly accurate identification of the tumor cases but at the
expense of misclassifying benign classes (reduced Precision
and IoU).

If we were to adopt the two current best versions of our
models as part of a consolidated segmentation-classification
pipeline for medical imaging, the consolidated model will
likely not be sufficiently fit for use due to the slightly infe-
rior segmentation model. Additional iterative fine-tuning
strategies are required to improve U-Net, also bearing in
mind that amongst other things, our dataset can be further
augmented, and our training depth can be increased.



Brain Tumor Detection using Machine Learning

Table 3. Evaluation of U-Net and DenseNet-121 Models

Model with Test Dataset F1! Precision Recall IoU

U-Net?, baseline 0.819 0.831 0.806 0.693

U-Net, finetuned

e AdamW with learning rate  0.841 0.841 0.840 0.725
scheduler

¢ AdamW with learning rate  0.795 0.717 0.893 0.660
scheduler and weighted BCE loss

¢ AdamW with learning rate  0.764 0.653 0.919 0.618
scheduler, warm-up scheduler and
weighted BCE loss

DenseNet-121, baseline 0.797 0.844 0.792 NA

DenseNet-121,  finetuned with  0.961 0.961 0.962 NA
AdamW and learning rate scheduler

lEquiva]em to Dice Coefficient. 2Using Binary Cross Entropy loss function.

5. Model 3: YOLO

YOLO (You Only Look Once) is a powerful deep learning
model that stands out for its object detection capabilities.
Unlike traditional image classification models that analyse
the entire image, YOLO excels at pinpointing and classify-
ing specific objects within an image.

Furthermore, YOLOVS8 achieves good accuracy while main-
taining processing speed. This efficiency translates to faster
analysis of images, which can be crucial in real-time clinical
settings in our context. Additionally, with minor adjust-
ments, YOLOVS can be adapted for classification tasks as
well. This potential allows for a single model that can not
only detect but also classify objects, potentially streamlining
the analysis process.

Beyond its core functionality, YOLOv8 boasts user-friendly
features like a command-line interface and a well-structured
Python package. This user-friendliness facilitates imple-
mentation and integration into existing workflows. More-
over, YOLOVS is backed by a large and active community,
providing readily available support and resources for trou-
bleshooting and further development.

These qualities make YOLOvVS a valuable tool for advancing
medical image analysis and potentially improving medical
diagnosis and could be a compelling choice for brain tumor
detection in MRI scans and.

5.1. YOLO Architecture

YOLOQ'’s architecture typically consists of three key com-
ponents such as backbone, neck and head (Refer to Figure
5).

Backbone: This initial stage extracts high-level features
from the input image. These features capture essential de-
tails about shapes, textures, and patterns crucial for object
identification.

YOLOv8 Muvoe

Figure 5. YOLOVS Architecture by GitHub user RangeKing

Neck: This module combines feature maps from various
backbone levels, allowing the model to capture features
at different resolutions for richer analysis. Unlike some
previous models, YOLOvVS might concatenate these features
without forcing them to have the same number of channels,
potentially leading to a more compact model size.

Head: The final stage predicts bounding boxes and class
probabilities for detected objects. YOLOVS’s key distinction
lies in its anchor-free approach, directly predicting bounding
box coordinates and class probabilities, potentially simpli-
fying the process and improving accuracy.

5.2. Evaluating Different Versions of YOLO

YOLO offers flexibility in model size that caters to different
deployment needs. Larger YOLO versions, like YOLOvS-
X, prioritize high accuracy but require more computational
resources. Conversely, smaller versions like YOLOvVS5-Tiny
prioritise speed and efficiency, making them suitable for
real-time applications on devices with limited processing
power. This range of sizes allows you to choose the best
YOLO model to strike a balance between speed and accu-
racy requirements.

For this project, in order to assess the trade-off between
accuracy and efficiency in state-of-the-art object detection
models, we compared YOLOVS5-X (i.e. the largest model
from YOLOVS5) with YOLOVS8-N (i.e. the smallest model
from YOLOVS). While YOLOv5-X is known for its speed
and robustness, our initial evaluation suggests YOLOvV8-N
offers more superior performance. As expected, YOLOv5-X
has the potential for higher accuracy due to its larger size,
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however, YOLOVS8-N, despite being a smaller model, ap-
pears to demonstrate comparable or even better accuracy
(Refer to Table 6). These improvements are likely to stem
from YOLOV8-N’s architectural refinements, including op-
timised layer configurations and the adoption of Automatic
Mixed Precision (AMP).

Table 4. Evaluation of YOLOV5-X and YOLOvVS8-N Models

Model F1 Score Precision Recall mAP@0.50"
YOLOV5-X 0.597 0.621 0.574 0.660
YOLOV8-N 0.783 0.797 0.770 0.831

1In object detection, mAP50 is a common metric that summarizes a model’s overall
performance across various detection difficulties by considering both precision and

recall at this specific IoU 50% threshold.

Overall, YOLOVS-N seems to perform better than YOLOVS-
X in terms of both precision and recall. It also has a higher
mAP@0Q.5 score (0.660 vs 0.831), indicating its overall
detection accuracy might be better. From this initial eval-
uation, it would appear that there is definitely more room
for improvement especially for YOLOv8-N and it would be
beneficial to finetune the model’s hyperparameters to look
at enhancing its performance.

5.3. Optimising YOLOv8-N

For this finetuning, we focus on 3 key components compris-
ing optimiser, learning rate and batch sizes to further refine
YOLOVS8-N’s performance for brain tumor classification.

Table 5. Optimising YOLOV8-N for the Best Model Performance

Model F1 Score Precision Recall
Adam, LR1 e-2,4Batch 0.764 0.785 0.745
SGD, LRI e-2,4Batch 0.884 0.901 0.868
AdamW,LR1 e-2,4Batch 0.903 0.906 0.901

Based on the Table 5, the most optimal set of configura-
tion was identified to be: Auto optimizer (AdamW), batch
size of 4, and a learning rate of 0.02. This configuration
achieved the best F1-score of 0.903, indicating fairly good
performance and the model also showed a favorable balance
between precision and recall. The optimised model demon-
strated promising capabilities in predicting brain tumor class
with varying confidence levels, highlighting its ability to
detect and classify tumors in MRI scans.

6. Assessment of Models and Recommendation
6.1. Summary of the 3 Selected Models

The project aimed at enhancing the accuracy of brain tumor
detection through machine learning has culminated in the
evaluation of three CNN models: Vision Transformer (ViT),

U-Net combined with DenseNet-121, and YOLO. Table
6 shows the comparative summary of their performances
based on precision, recall, and F1 scores:

Table 6. Summary of 3 selected models

Model F1 Score Precision Recall
Vision Transformer (ViT) 0.837 0.859 0.822
U-Net + DenseNet-121 0.901 0.901 0.901
YOLOv8n 0.903 0.906 0.901

The Vision Transformer (ViT) is commendable for its de-
tailed contextual image analysis, achieving an F1 score of
0.837. This model is particularly suited to research-driven
applications where comprehensive image examination is

paramount, although its deployment requires significant

computational investment.

The combined U-Net and DenseNet-121 model, with its F1
score of 0.901, offers an integrated approach to brain tumor
detection, balancing the strengths of both architectures to

provide precise image segmentation and classification. If

we integrate the top-performing versions of our models into

a combined medical imaging pipeline, the overall model

may not reach the required standard due to the segmentation

model’s limitations. To address this, we must refine U-

Net through additional fine-tuning, dataset expansion, and

extended training to ensure clinical viability.

YOLOvS8n, with its agility and efficiency, c aters well to
the pressing demands of clinical scenarios, evidenced by
an F1 score of 0.903, slightly above U-Net and
DenseNet-121’s score. It is optimal for environments
where time is a factor, and rapid diagnosis can significantly
influence patient outcomes .

6.2. Assessment and Recommendation

Each model reviewed brings distinct strengths to medical
imaging applications. The Vision Transformer excels in de-
tailed image analysis due to its ability to process contextual
relationships within the image, making it suitable for com-
plex diagnostic tasks where deep insights are critical. How-
ever, it requires substantial computational resources and
extensive training times, which may not be feasible in all
clinical settings. The combination of U-Net and DenseNet-
121 is highly effective for tasks requiring precise image
segmentation followed by accurate classification, ideal for
structured diagnostic environments. Yet, like ViT, they de-
mand significant computational power and processing time.

YOLOV8n, known for its speed and efficiency in real-time
detection, offers a viable option for emergency situations
where rapid diagnosis is essential. Although it generally
provides less precision than the other models, its ability to
quickly process images makes it invaluable in time-sensitive
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scenarios. When recommending models, YOLOv&n is best
for fast-paced environments, U-Net with DenseNet-121 for
accuracy-critical settings, and ViT for research-focused ap-
plications where computational resources are abundant.

The primary limitations of these models are their compu-
tational demands and the operational costs associated with
them. Implementing ViT and U-Net with DenseNet-121 in
resource-limited settings could be challenging due to their
requirements for advanced hardware and lengthy training
periods. Additionally, while YOLOv8n’s faster processing
capability is advantageous, the potential compromise on
accuracy must be carefully managed, particularly in critical
medical diagnostics.

6.3. Conclusion

The deployment of machine learning models has signifi-
cantly advanced the field of medical imaging and diagnos-
tics, including the detection and classification of brain tu-
mors. The evaluation of three sophisticated models - Vision
Transformer (ViT), U-Net combined with DenseNet-121,
and YOLOV8n - highlights their distinct strengths and suit-
ability for different diagnostic requirements and settings.

The Vision Transformer excels in complex diagnostic sce-
narios where deep contextual analysis of imaging data is
crucial, making it well-suited for research environments and
specialized medical applications (Xie et al., 2022). The
combined approach of U-Net and DenseNet-121 is ideal for
applications where precise segmentation and detailed classi-
fication are paramount, ensuring high diagnostic accuracy
essential for effective treatment planning (Anaya-Isaza &
Mera-Jiménez, 2022). YOLO, with its remarkable speed
and efficiency, addresses the urgent needs of clinical en-
vironments where rapid tumor detection can significantly
impact patient outcomes (Soomro TA, 2022).

The adoption of machine learning in medical imaging
presents both opportunities and challenges for healthcare
businesses. While machine learning algorithms can assist
in making more accurate and efficient diagnoses, leading
to improved patient outcomes and reduced costs, the imple-
mentation also comes with risks, such as the potential for
biased or unreliable predictions. When selecting a machine
learning model, healthcare institutions should carefully eval-
uate the tradeoffs and ensure appropriate governance and
oversight to mitigate these risks

Overall, the application of these models can lead to ear-
lier disease detection and more accurate diagnoses, with
the added benefits of streamlined workflows and cost ef-
ficiencies. Nonetheless, this technological leap demands
careful consideration of biases, ethical standards, and the
need for transparent model predictions. A balanced, multi-
disciplinary approach, encompassing clinical, imaging, data

science, and regulatory expertise, is imperative to ensure
these models are used responsibly and effectively within
the medical field, mitigating risks while maximizing patient
care and operational benefits.

Code and Data

The code used for this project is available on GitHub.
For access to the source code, additional resources,
and documentation, please visit our GitHub repository:
github.com/gabigarms/BT5153-Final-Project.
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