
BT5153 Group10 Detect AI-Generated Text

Chen Xiaofei (A0242321X)

Deng Shuanghong (A0280445E)

Xie Shiqi (A0280499M)

Liu Yuhang (A0280494X)

Zhang Hongyang (A0262805E)

Abstract

This project addresses the challenge of distinguishing
between human-authored and AI-generated text using a
meticulously curated dataset and comprehensive linguistic
analysis. Traditional machine learning models, including
logistic regression with TF-IDF and linguistic feature
analysis, achieved high accuracy in text classification.
Neural-based methods, such as DistilBERT, demonstrated
outstanding performance, surpassing 93% accuracy. The
study highlights the importance of responsible AI usage
and transparent model interpretation for ensuring digital
authenticity and trust. Future work includes refining
models, expanding datasets, and extending real-time
detection capabilities across media platforms.

1. Problem Statement

In today's digital landscape, the proliferation of large
language models (LLMs) has revolutionised text
generation capabilities, producing content that can closely
mimic human writing. This technological advancement,
while impressive, brings with it significant challenges to
academic integrity, content authenticity, and digital trust.
Misuses of this technology, such as the spread of fake
news, impersonation, and academic dishonesty including
plagiarism and AI-authored essays, pose serious threats to
the credibility of educational entities, the authenticity of
published content, and the reliability of online
communication.

The core problem our project addresses is the need for
robust mechanisms to discern AI-generated text from
human-authored content. This capability is crucial for
educational institutions, publishers, and content platforms
that rely heavily on the authenticity and integrity of their
text. By developing a model that can accurately identify
AI-generated essays and other texts, we aim to bolster
defences against the misuse of text generation
technologies.

The importance of this project extends beyond mere
content verification. It involves setting standards for
ethical AI usage and establishing a framework that
ensures AI tools enhance digital trust and content
authenticity without compromising the credibility of
digital content. By tackling these challenges, the project
not only protects existing infrastructures but also pioneers
responsible AI practices that could serve as benchmarks
for future technological deployments. This endeavour is
not just a response to a growing problem but a proactive
step towards shaping the future of digital content creation
and consumption in an AI-augmented world.

2. Dataset Description

The dataset at hand, as meticulously compiled and
presented by Aaditya Bhat (2023), serves a critical
function in the domain of computational linguistics and
artificial intelligence. It has been curated for the express
purpose of facilitating the training of machine learning
models that discern between human-authored text and text
generated by advanced generative models, specifically the
GPT (Generative Pre-trained Transformer) variant known
as 'Curie'.

2.1 Composition and Characteristics

This corpus encompasses introductory paragraphs drawn
from Wikipedia for a sweeping range of 150,000 topics,
alongside counterparts generated by the aforementioned
GPT model. These introductory sections are constructed
to adhere to a standardised format of 200 words,
emulating the style typical of Wikipedia entries.

To initiate text generation, a fixed prompt is employed,
incorporating the topic's title and the initial seven words
of the genuine Wikipedia introduction. The GPT model
tasked with text production operates under the following
configuration parameters: model="text-curie-001", with a
set temperature of 0.7 to modulate creativity, max_tokens
capped at 300 to limit output length, top_p set to 1 to

1



BT5153 Group10 Detect AI-Generated Text

allow full probability distribution, and penalties applied
for frequency (frequency_penalty=0.4) and presence
(presence_penalty=0.1), presumably to foster diversity
and discourage repetition.

2.2 Data Schema

The dataset is systematically structured into discrete
columns with precise data types and descriptors. The
primary identifier id corresponds to a 64-bit integer, and
accompanying attributes include the url of the source
Wikipedia page, the title of the topic, and the textual
content of both wiki_intro (sourced from Wikipedia) and
generated_intro (produced by the GPT model).
Quantitative attributes capture the length in words
(title_len, wiki_intro_len, generated_intro_len) and tokens
(prompt_tokens, generated_text_tokens), providing
measures of text complexity and density.

3. Data Preprocessing

In the preprocessing phase of data preparation, the dataset
`GPT-wiki-intro.csv` undergoes a series of
transformations to render it suitable for the subsequent
modelling tasks. The initial step involves reading the
dataset into a pandas DataFrame. This is followed by the
duplication of the dataset to establish distinct subsets for
human-written and AI-generated texts, which are pivotal
for training classification models to distinguish between
these two types of text. The `human_df` subset is obtained
by excluding the `generated_intro` column, signifying
AI-crafted introductions, and consequently re-labeling the
`wiki_intro` column as `text`. This subset is appended
with a `label` column containing zeros, designating the
human-authored nature of the text.

Conversely, the `ai_df` subset is derived by discarding the
`wiki_intro` column, thereby removing the human-written
content, and re-labelling the `generated_intro` as `text`.
Analogously, a `label` column is appended, populated
with ones to indicate AI-generated text. Subsequently,
these subsets are amalgamated into a singular DataFrame,
`combined_df`, which amalgamates human and
AI-generated text samples, ensuring a balanced
representation.

The consolidated dataset is then randomised using the
`sample` method with a `random_state` for
reproducibility, to mitigate any potential bias that could
arise from the original ordering. The randomised dataset
is finally exported to a CSV file,
`combined_text_dataset.csv`, ensuring that the index is
not included, thereby completing the data preprocessing
stage which sets the foundation for the model to learn
discriminative patterns inherent to each class of text.

4. Statistical Analysis

In order to reveal the differences between
human-authored content and AI-generated content, we
conducted a comprehensive statistical analysis of
linguistic features, particularly lexical diversity, sentence
complexity, readability scores, and frequency distribution
of part of speech. By examining and visualising these
features, we aim to uncover subtle and unique
characteristics that help distinguish AI-generated content
from human-written prose. The comprehensive plots are
shown in Appendix A.

4.1 Lexical Diversity Analysis

The boxplot for lexical diversity shows that
human-written text (label 0) tends to have a slightly
higher lexical diversity than AI-generated text (label 1).
This suggests that human writers typically use a broader
vocabulary within their texts, while AI may be prone to
reuse a more limited set of words. This characteristic can
serve as a valuable marker for identifying AI-generated
content.

4.2 Readability Score Analysis

Readability scores, as depicted in the box plot, reveal that
human-written text has a broader interquartile range,
implying a more variable readability level than
AI-generated content. Interestingly, the median readability
score for AI-generated text is higher, suggesting that such
texts tend to be written in a way that is, on average, easier
to read. This may reflect the optimisation algorithms in AI
text generation that aim for clarity and understandability.

4.3 Average Sentence Length

The average sentence length in human-written texts
displays significant variability, with some extreme outliers
showing unusually long sentences, contributing to a more
dynamic and varied reading experience. In contrast,
AI-generated texts have a tighter distribution with fewer
extreme values indicating a programmed adherence to
syntactic construction rules that do not vary significantly.

4.4 Average Word Length

Both human and AI-generated texts exhibit similar
distributions for average word length, with a slight
tendency for AI-generated texts to have a less variable
word length, which suggests a lack of nuanced word
choice under certain contexts.

4.5 Stopwords Percentage

Regarding the percentage of stopwords the median and
variability range is slightly higher on average in
AI-generated texts, which indicates that AI-generated
texts may use a higher proportion of common, less
informative words than human-written texts, possibly due

2



BT5153 Group10 Detect AI-Generated Text

to the nature of training algorithms that favour common
language patterns for general applicability.

4.6 Frequency Distribution of Part of Speech (POS)

We calculated the frequency distribution of POS tags to
gauge the syntactic variety and complexity within the text
corpus. This distribution provides insightful metrics on
the linguistic structure of the texts, highlighting the
predominance of certain grammatical categories, such as
nouns, verbs, adjectives, etc. which are essential for
understanding the stylistic and functional aspects of the
language. It extracted 45 POS tags individually, the
summarised patterns are listed below:

4.6.1 Proper nouns (NNP) and nouns (NN)

Human-written contents show higher median and more
variability in the use of proper nouns and common nouns,
indicative of more detailed and context-specific content.
The limited and repetitive use of nouns in AI-generated
texts highlights its lack of detailed world knowledge.

4.6.2 Pronouns (PRP, PRP$)

Human-written contents have greater variability in
personal and possessive pronouns, highlighting more
complex narrative styles or dialogues. However
AI-generated text lacks varied narrative perspectives.

4.6.3 Verbs (VBD, VBN, VBG, VB, VBP, VBZ)

Human-written contents use diverse patterns in verb
forms, with noticeable outliers, reflecting a range of
narrative tenses and a dynamic use of language.
AI-generated texts generally consistently use fewer
extremes.

4.6.4 Adjectives (JJ, JJR, JJS) and Adverbs (RB,
RBR, RBS)

Humans use wider ranges and higher occurrences of
adjectives and adverbs, especially with comparative and
superlative forms, indicating richer descriptive content.
While AI uses a narrower distribution of them, which
indicates a less nuanced approach to description.

4.6.5 Function Words (IN, DT, CC) and Others
(TO, MD)

Both show substantial use of function words, but humans
exhibit greater variability, suggesting more complex
sentence structures.

4.6.6 Special Characters and Symbols (Commas,
Periods, Quotation Marks)

Human-written content contains variable and frequent
punctuation usage, reflecting natural language flow and
structure. AI use consistent but different patterns in

punctuation usage to highlight differences in sentence
structuring techniques.

4.6.7 Interjections (UH), Foreign Words (FW), and
Symbols (SYM)

Humans use such elements to indicate stylistic flair or
specific content needs, while AI uses them less due to a
lack of spontaneity and contextual adaptability.

5. Traditional Machine-Learning Models

5.1 Linguistic Features + Logistic Regression

Logistic regression is a commonly-used machine learning
model for binary classification, catering to our case where
there exists two outcomes: human-written and
AI-generated. Additionally, logistic regression provides a
probabilistic nature, easy interpretability, high efficiency,
strong robustness and flexibility. Therefore we trained 2
logistic regression models using different methodologies,
such as TF-IDF and Linguistic Features Analysis.

5.1.1 TF-IDF

Firstly, we implemented TF-IDF to transform textual data
into numerical format suitable for machine learning
algorithms. This technique highlights the importance of a
word based on the frequency it appears in a document
balanced against its commonness across all documents.
All texts were vectorised using TF-IDF to transform text
data into numerical features, where each row represents a
document and each column indicates a TF-IDF score.

We split the dataset into 80% for training and 20% for
testing, fit the vectoriser on the training and test data and
transformed them separately. Thereafter, we trained and
tuned the logistic regression model on the vectorised
training data. Essential hyperparameters of the logistic
model, such as regularisation strength and solver, are
adjusted based on cross-validation results to optimise the
model's performance.

Lastly, we evaluated the model’s performance using
metrics such as accuracy, precision, recall, and F1-score,
tested on the unseen test data.

Figure 1. Model performance for logistic regression with
TF-IDF

3



BT5153 Group10 Detect AI-Generated Text

As shown in the above classification report, the model
achieved promising results, with high values of 0.96 in
precision and recall, indicating the model's effectiveness
in distinguishing between human and AI texts. The
analysis of the model coefficients revealed that certain
terms significantly influence the classification, providing
insights into features that are distinctly prevalent in
human versus AI-generated texts.

5.1.2 Statistic-Based Detector - Linguistic Features
Statistics

We have implemented one of the statistic-based detectors
- linguistic feature statistic to our project. The extraction
of linguistic features using NLTK and Textstat libraries
offers a robust method for analysing textual data.

We initially used NLTK (Natural Language Toolkit) to
tokenise text into words and sentences, tag parts of
speech, and determine the frequency distribution of these
tags, to facilitate detailed linguistic analysis. We utilised
Textstat to calculate readability scores, providing insights
into the complexity and understandability of the text.

Next, we defined various linguistic features such as
lexical diversity, sentence complexity, readability, and
frequency distributions of POS Tags. Thus we can gain
deeper insights into the characteristics that distinguish
human-written texts from those generated by AI. This
approach not only aids in the classification of text origins
but also enriches our understanding of language use in
different contexts.

Thereafter, we loaded our datasets and extracted the
linguistic features for all texts individually, and converted
the list of dictionaries into a data frame. Extracting the
linguistic features from the combined dataset rather than
separating them by label beforehand achieved unbiased
feature engineering, contained statistical consistency, and
maintained scalable and simplified processing.

To train our model, we utilised features data frame as our
model input, ‘label’ as the target variable, and split the
dataset into 80% for training and 20% for testing. Prior to
training the model, we scaled the feature data to ensure
that no single feature dominates the model due to its
scale, thus contributing to more stable and faster
convergence during training. The scaler is fitted on the
training data and subsequently used to transform both the
training and testing datasets to maintain consistency in
how data is treated across both phases.

We then trained and tuned the logistic regression model
using scaled training data, allowing it to learn to
differentiate between the classes based on the transformed
features. Lastly, we generated the classification report to
evaluate the model performance, shown below.

Figure 2. Model performance for logistic regression with
linguistic features

The logistic regression model demonstrated a consistent
and commendable performance in classifying texts,
achieving an overall accuracy of 85%. For both
human-written (Class 0) and AI-generated texts (Class 1),
the model recorded precision, recall, and F1-scores of
0.85. This indicates a high level of accuracy and balance
in correctly identifying and classifying both types of texts.
The macro and weighted averages for precision, recall,
and F1-score uniformly stood at 0.85, reflecting the
model's unbiased performance across both classes. This
consistent efficacy across different volumes of class
instances highlights the model’s robustness and its
potential utility in applications requiring precise text
source classification.

5.2 Linguistic Features-Based Classifiers using
SVM and KNN

In addition to logistic regression, we extended the scope
of feature-based classifiers to Support Vector Machines
(SVM) and K-Nearest Neighbors (KNN) classifiers. We
extracted a set of seven crucial linguistic features that are
indicative of the stylistic, complexity, and sentiment
characteristics of the texts. The features include:

● Capitalised Word Frequency: Measures the
prevalence of capitalised words, reflecting the
formal style often found in written texts.

● Stopword Frequency: Assesses the density of
common words, which can indicate general text flow
and readability.

● Quote Frequency: Quantifies the use of quotations,
relevant to identifying narrative or reported speech.

● Punctuation Ratio: Evaluates the frequency of
punctuation marks, which helps in understanding
sentence structuring.

● Average Sentence Length: Provides insights into the
complexity and readability of the text.

● Type-Token Ratio (TTR): A lexical diversity index
measuring the ratio of unique words to the total
number of words, showcases the complexity of the
text.

● Sentiment Score: A psychological feature linked to
sentiment analysis, derived using SentiWordNet
(Baccianella, Esuli, & Sebastiani, 2010).

4



BT5153 Group10 Detect AI-Generated Text

Prior to classification, the features are scaled to ensure
that our SVM and KNN models function optimally
without bias towards any disproportionately scaled
feature. A standard scaler is implemented to normalise the
data, providing each feature with equal initial weightage
in the subsequent analysis.

For the classification task, SVM was chosen for its
effectiveness in high-dimensional spaces, and KNN was
utilised to exploit its capability of handling outliers and
making decisions based on the majority vote from the
nearest data points.

Figure 3. Model accuracy at different #. of neighbours

For the KNN classifier, the optimal number of neighbours
(K) was determined through Grid Search, testing values
from 1 to 20. The relationship between K values and the
model's mean test score is depicted in Figure 3, which
shows a clear trend: accuracy increases with higher K
values. The graph highlights that K=19 offers the highest
accuracy and was thus chosen for the final model applied
to the test set.

Using K=19, our final KNN model exhibited robust
performance metrics on our test data with accuracy:
77.93%, precision: 77.79%, recall: 78.17% and F1 Score:
77.98%. These results closely mirror the training
outcomes, suggesting an absence of both overfitting and
underfitting. This balance underscores the model's ability
to generalise effectively across unseen data. In contrast,
other studies have reported achieving up to 97% accuracy
by extracting 21 textual features and utilising a KNN
classifier (Aich, Bhattacharya, & Parde, 2022). This
highlights the significance of selecting diverse and
relevant textual features, which can significantly enhance
the classifier's ability to distinguish between
human-written and AI-generated texts.

When SVM is applied to scaled features, there is an
improvement in model performance, with accuracy:
79.10%, precision: 78.91%, recall: 79.44% and F1 Score:
79.17%. This enhancement can largely be attributed to
SVM's robustness against outliers, compared to KNN,
which is more sensitive to local data distributions. Despite
this improvement, the relatively modest gains suggest that

the overall performance may still be constrained by the
selection and quality of the extracted features. This
indicates that optimising feature extraction could
potentially lead to further gains in model accuracy and
effectiveness.

6. Neural-Based Methods

6.1 LLM as Detectors

ChatGPT was utilised to classify texts generated by LLMs
and those written by humans. However, the results were
underwhelming, casting doubt on the reliability of using
LLMs as detectors. The model often misclassified texts
produced by LLMs as human-written. Intriguingly, the
zero-shot setting outperformed both the one-shot and
two-shot settings. Nevertheless, the accuracy rates for the
one-shot and two-shot settings fell below 50% as shown
in Appendix B. This underscores the decreasing
dependability of using LLMs for direct detection of
self-generated text, especially when contrasted with
methods based on statistical and linguistic features.

6.2 DistilBERT

DistilBERT is a lightweight variant of the BERT model. It
halves the original 12 transformer layers in the original
BERT model, resulting in around a 40% decrease in size
and 60% speed improvement, and at the same time retains
97% of BERT’s performance on various NLP tasks.
Hence, it is highly suitable for scenarios with limitations
on computational resources and time. Compared to
traditional NLP techniques, DistilBERT can capture the
semantics and context of words, and handle
out-of-vocabulary (OOV) words, but it requires a lot more
computational resources compared to traditional machine
learning models.

Prior to implementing the DistilBERT model, we
tokenised each document in our dataset to visualise the
distribution of token length across different documents in
the corpus. We loaded the distilbert-base-uncased
tokeniser from the Hugging Face library, as it is designed
to handle inputs compatible with the DistilBERT
architecture. We specified a maximum token length of
512 tokens, which is a common threshold in many NLP
tasks, as it balances between capturing sufficient
contextual information and maintaining manageable
computation requirements. We visualised the token
lengths for each document in the histogram in Figure 4.
The bimodal distribution indicates that the most common
token lengths fall within the range from 150 to 300
tokens, with only a few exceeding 512 tokens, assuring us
that applying a maximum length of 512 tokens would not

5



BT5153 Group10 Detect AI-Generated Text

lead to a significant loss of information. This step is
crucial in preparation for the DistilBERT model, as
understanding the distribution of token lengths helps us
assess padding needs and evaluate truncation impact.

Figure 4. Distribution of Token Lengths

We split the dataset into training (60%), validation (20%)
and testing (20%) datasets. A smaller proportion of the
training set was chosen to speed up the training process.

We then constructed a DataLoader by defining a custom
Dataset class to efficiently manage the loading and
batching of our text data for input into the DistilBERT
model, including using a tokeniser to convert each
paragraph in the dataset while incorporating necessary
parameters such as max_length to handle maximum token
length, special tokens, padding and attention mask. We
used a maximum token length of 512 and a batch size of
8. It is important to note that we did not remove
stopwords during tokenisation because DistilBERT
benefits from complete text data to understand the context
and nuances of the language. This setup ensures that the
input batches are uniformly structured, streamlining the
subsequent learning process.

After creating the DataLoaders for training, validation and
testing sets respectively, we moved on to the initialisation
and training phase of the DistilBERT model using
PyTorch Lightning, which simplifies the code from a
typical PyTorch training loop.

First, we imported the pre-trained DistilBERT model
specifically tailored for sequence classification tasks with
AutoModelForSequenceClassification. We unfreezed the
last two layers of the pre-trained model to adjust these
parameters during the training process. This step allows
the model training to focus on fine-tuning the most
relevant parts of the model to our dataset and the binary
classification task.

Then, we defined a custom PyTorch Lightning class
called LLMDetector class, which specifies the training,
validation, and testing steps. During each training batch,
the model processes input tokens and attention masks,
calculates the loss, predicts labels from logits, and logs

relevant accuracy and loss metrics. Similar procedures are
followed for validation and test batches where the model
evaluates its performance on unseen data and logs the
relevant metrics. We used an Adam optimiser, which is
typical for training neural networks, and a linear scheduler
to adjust the learning rate throughout the training process,
which can help the model better converge by gradually
decreasing the learning rate.

Next, a Trainer object of the PyTorch Lightning module is
configured, specifying the number of epochs, device for
training, and logging settings. This is used to fit the model
to our dataset, where the model would pass the input data
through the layers during forward propagation, calculate
the loss function, and update the weights through
backpropagation. After each training epoch, the model
was evaluated on the separate validation set in the
evaluation mode without backpropagation or parameter
updates.

Finally, we plotted the history of validation accuracies in
Figure 5, which was interpolated to omit minor decreases
in accuracy. The graph shows that the accuracy continued
to improve throughout the 10 epochs, among which 7
epochs achieved increases in validation accuracy. We
selected the model with the highest validation accuracy as
our “best model”, which was then used to make
predictions on the test dataset. The highest validation
accuracy of 0.93155 was reached at the 9th epoch, and the
test accuracy was 0.9325.

Figure 5. Validation Accuracy over Epochs

Overall, we reached a quite satisfying level of accuracy
by fine-tuning the pre-trained DistilBERT model, with
test and validation accuracy both exceeding 93%,
indicating that our model generalises well to new, unseen
data and demonstrates robust performance across different
subsets of the dataset. This shows that by capturing the
context of words and understanding the sequence of
words, the DistilBERT model can distinguish the
differences between human-written and AI-generated
texts. At the same time, the downside is that, although a
lightweight version of the BERT family, DistilBERT is
still a transformer-based model that is relatively large and
resource-intensive to train. For this specific task, the

6



BT5153 Group10 Detect AI-Generated Text

training process took us more than 25 hours on an Apple
M2 Pro 16-Core GPU.

7. Conclusion

In conclusion, our project has successfully developed and
compared several models to detect AI-generated text,
addressing crucial digital authenticity challenges.

Model Accu
racy

Advantages Limitations

Logistic
Regression
with
TF-IDF

96% - Effective at
handling sparse
data
- Interpretable
model
- Quick to train
and predict

-Struggles with
non-linear
relationships
- Relies on
proper
pre-processing
to handle text
data well

Logistic
Regression
with
statistic-ba
sed
detector

85% - Incorporates
linguistic features
directly
- Provides
interpretable
results
- Good for small
to medium
datasets

- Requires
careful feature
selection
- May not
capture
complex
patterns in large
datasets

KNN 78% - Simple to
implement and
understand
- No assumption
about data
distribution
- Flexible to
feature/distance
choices

- Slow at
making
predictions in
large datasets
- Sensitive to
noisy data and
irrelevant
features

SVM 79% - Effective in
high-dimensional
spaces
- Works well with
clear margin of
separation
- Versatile with
different kernels

- Requires full
data loading for
training
- Intensive
memory usage
- Difficult to
choose
appropriate
kernel

DistilBER
T

93% -State-of-the-art
performance for
text data
- Understands
context and
semantics
- Reduced model
size from BERT

- Still requires
significant
computational
resources- May
need
fine-tuning for
specific tasks

Figure 6. Comparison of different models

Based on the performance metrics we have, the Logistic
Regression model with implementation of TF-IDF
exhibits the highest level of accuracy among the evaluated
models, achieving a precision, recall, and F1 score of
96%. This indicates a highly effective model in
distinguishing between human-written and AI-generated
texts. It is effective at handling sparse data and provides a
model that is both interpretable and quick to train and
predict. However, it may struggle with non-linear
relationships and heavily relies on proper pre-processing
to handle text data effectively. Additionally, the Logistic
Regression model with a statistic-based detector
demonstrated a consistent and commendable performance
in classifying texts, achieving an overall accuracy of 85%.
The advantage of this model leverages the direct
incorporation of linguistic features, enhancing
interpretability, but it requires careful feature selection
and may not capture complex patterns in large datasets. In
comparison, both the SVM and KNN models show
somewhat lower performance, with precision and recall
rates around 78%, and F1 scores of 79% and 78%
respectively. These models, while useful, appear less
consistent in correctly identifying the text origins
compared to Logistic Regression. KNN excels in
scenarios where the decision boundary is not linear.
However, KNN can be computationally expensive for
large datasets and is sensitive to noisy data and irrelevant
features. SVM is effective in high-dimensional spaces and
can handle complex datasets with a clear margin of
separation, supported by its versatility with different
kernels. Yet, SVMs suffer from high memory usage and
the computational burden increases with data size, and
selecting the appropriate kernel can be challenging.
DistilBERT, a more complex neural network model, also
shows strong performance with all metrics at 93%,
suggesting that despite the higher computational
demands, it is highly effective for tasks requiring a
nuanced understanding of the text. This demonstrates
DistilBERT's capability to capture the complexities of
language that differentiate human and AI-generated
content. Despite these advantages, DistilBERT still
demands considerable computational resources and may
require specific fine-tuning for particular tasks, which

7



BT5153 Group10 Detect AI-Generated Text

could be a limitation in resource-constrained
environments. Thus, while Logistic Regression leads in
raw performance metrics, DistilBERT offers a robust
alternative when higher model complexity and deeper
linguistic analysis are required.

8. Future Work

Looking forward, there is still space to enhance the
precision and applicability of AI text detection models.
Future work will focus on refining model structures and
expanding training datasets to cover more nuanced
linguistic features. Moreover, extending these models to
detect AI-generated content in real-time across different
media remains a critical need, particularly for platforms
where immediate content verification is crucial. We also
advocate for continued research into the ethical use of AI,
ensuring that advancements in detection technology are
used responsibly and transparently.

References

Bhat, A. (2023). GPT-wiki-intro (Revision 0e458f5).
HuggingFace.
https://huggingface.co/datasets/aadityaubhat/GPT-wiki-int
ro.https://doi.org/10.57967/hf/0326

Baccianella, S., Esuli, A., & Sebastiani, F. (2010).
SentiWordNet 3.0: An enhanced lexical resource for
sentiment analysis and opinion mining. In Proceedings of
the International Conference on Language Resources and
Evaluation, LREC 2010, 17-23 May 2010, Valletta, Malta
(pp. 2200-2204). European Language Resources
Association (ELRA).

Aich, A., Bhattacharya, S., & Parde, N. (2022).
Demystifying neural fake news via linguistic
feature-based interpretation. In Proceedings of the 29th
International Conference on Computational Linguistics,
COLING 2022, October 12-17, 2022, Gyeongju, Republic
of Korea (pp. 6586-6599). International Committee on
Computational Linguistics.

Appendix

Appendix A: Plots of Linguistic Features

8

https://huggingface.co/datasets/aadityaubhat/GPT-wiki-intro
https://huggingface.co/datasets/aadityaubhat/GPT-wiki-intro.https://doi.org/10.57967/hf/0326
https://huggingface.co/datasets/aadityaubhat/GPT-wiki-intro.https://doi.org/10.57967/hf/0326


BT5153 Group10 Detect AI-Generated Text

Appendix B: Results using ChatGPT as Detector

Appendix C: Project Repository
GitHub Repository “BT5153-Detect-AI-Generated-Text”:
https://github.com/Rihond/BT5153-Detect-AI-Generate
d-Text

9

https://github.com/Rihond/BT5153-Detect-AI-Generated-Text
https://github.com/Rihond/BT5153-Detect-AI-Generated-Text

