
AI-Generated Image Detector

CHEN RONGRONG LIU WANHUA PING WANG QIAN WAN WANG, YICHEN

Abstract
This project aims to provide photography stock
platforms with an image authentication tool to
identify AI-generated photos, safeguarding in-
tegrity of photographers’ works. It focuses on de-
veloping an end-to-end web app, using neural net-
works to accurately distinguish AI-generated land-
scape photos from human-captured ones. Model
performance is evaluated based on scenery types,
with explanations provided by Gram-CAM.

1. Introduction
In today’s digital economy, photography stock platforms
such as Adobe Stock, Shutterstock, Getty Images, and
500px have gained immense popularity as venues for mone-
tizing photography. These platforms heavily rely on the au-
thenticity of shared content, but the emergence of advanced
AI tools like DALL-E and Mid-Journey presents a growing
challenge. These technologies can produce highly realis-
tic images that may be mistaken for genuine photographs,
misleading consumers, harming careers and livelihood of
professional photographers, and undermining trust in digital
content.

Our project aims to address this issue by using machine
learning algorithms and neural networks like ResNet50,
MobileNetV2, and EfficientNetB0 to accurately distinguish
between AI-generated and human-captured (referred to as
“authentic” or “real”) photos, focusing specifically on land-
scape analysis. This focus serves three primary purposes:
firstly, due to the narrow focus, gathering sufficient data for
effective learning of each scenery type is tangible, which
ensures model accuracy. Secondly, by utilizing a specialized
dataset, model’s explainability is enhanced across various
scenarios, aiding in fine-tuning. Additionally, this task holds
significant societal value, preventing misleading information
for tourists and aiding environmental monitoring efforts.

The desired outcome for the AI Image Authenticity Verifi-
cation project focuses on four main objectives:

• Accurate Detection: Striving for superior detection
rates of AI-generated images to minimize false posi-
tives and negatives, aiming to set a new industry stan-
dard that surpasses current benchmarks like C2PA.

• End-to-End Streamlined Web Application: Commit-
ting to traversing the entire process from data collection
to deployment as a web application, ensuring ease of
use.

• High Explainability: Guaranteeing clear explanations
for why the model succeeds or fails on specific scenery
types, empowering users with insights during deploy-
ment.

• Beneficial Social Impact: Enhancing digital trust,
demonstrated by reduced misinformation spread and
increased user engagement.

In summary, this project’s objective is not only to provide a
tool for image authentication but also to maintain individual
credit and ethics, maintain professional standards, and sup-
port the integrity of photography stock platforms within the
digital economy.

2. Dataset
2.1. Data Collection

Our dataset comprises two distinct sets of scenery images
(Real and AI-generated). For real ones, we utilize the Kag-
gle dataset available at “Intel Image Classification”. This
dataset features finely categorized scenery images, includ-
ing buildings, forests, glaciers, mountains, seas, and streets,
which is ideal for detailed exploratory analysis. For AI-
generated images, we source photos of the same scenery
types from Freepik platform, ensuring a balanced represen-
tation across all scenery type to mimic the diversity found
in the real images. This structured approach aids in our
subsequent EDA and insights generation.

2.2. Exploratory Data Analysis (EDA)

In our exploratory data analysis, we compare image counts
of the two classes (AI-generated and real) and perform a
descriptive analysis for each scenery type using word clouds
derived from image descriptions. The overall number of
real images is slightly higher than AI-generated ones, and
we maintain this ratio across scenery types to ensure the fair
comparison of model performance between scenery types.



AI-Generated Image Detector

Figure 1. Number of Entries per Class

Figure 2. Number of Entries per Scenery Type

The word clouds created for each scenery type reveal dis-
tinct thematic and visual patterns. In the forest category,
prevalent terms like “green”, “lush”, and “tranquil” not only
suggest dense vegetation but also imply a dominant green
color palette that characterizes these images. For the build-
ings category, words such as “downtown”, “skyscraper”,
and “commercial” reflect the urban environments typically
depicted, featuring architectural elements and often a more
varied and sometimes grayish color tone due to the concrete
and metal structures. The glacier category is marked by
descriptors like “snow”, “ice”, and “mountain”, indicating
imagery filled with white and blue hues that emphasize the
chill and serenity of snowy landscapes. This approach allow
us to gather valuable insights into the common descriptors
and color schemes associated with each scenery type, aiding
in the development of a more nuanced model capable of
distinguishing between AI-generated and real images based
on both content and stylistic elements.

Figure 3. Word Cloud per Scenery Type

3. Modeling
3.1. Key Features of Chosen Models

3.1.1. RESNET50

ResNet50 features shortcut connections and bottleneck lay-
ers, enhancing training efficiency and performance. Key
advantages include:

• Gradient Management: Addresses vanishing gradi-
ent problem with shortcut connections, ensuring effi-
cient gradient flow.

• Efficient Training: Utilizes 1x1 convolutions in bot-
tleneck layers to reduce parameters and computational
load, enabling faster training.

• Streamlined Complexity: Simplifies structure com-
pared to VGG architecture, maintaining feature capture
effectiveness.

3.1.2. MOBILENETV2

MobileNetV2, renowned for efficiency on mobile devices,
serves as a feature extractor leveraging pretrained features
from ImageNet. Key features include:

• Efficiency: Designed for computational efficiency
without compromising performance, suitable for
hardware-limited devices.



AI-Generated Image Detector

• Transfer Learning: Pre-trained on ImageNet, provid-
ing strong feature extraction base applicable to various
tasks.

• Adaptability: Easily adaptable to new tasks with min-
imal structural adjustments, especially effective in im-
age classification tasks.

3.1.3. EFFICIENTNETB0

EfficientNetB0 offers a scalable architecture balancing
depth, width, and resolution for optimal performance and
efficiency. Key features include:

• Efficiency and Scalability: Designed for systematic
scaling across model dimensions, achieving superior
performance without excessive computational demand.

• Transfer Learning: Pre-trained on ImageNet, provid-
ing robust feature set for diverse image recognition
tasks.

• Adaptability: Easily adaptable with minimal adjust-
ments, particularly effective in image classification
tasks leveraging deep learned features.

3.2. Pipeline Overview

For experimentation purpose, two deep learning frameworks
are used: PyTorch for ResNet50 and EfficientNetB0 while
Tensorflow for MobileNetV2. We harmonize the two frame-
works in the deployment stage, which will be elaborated the
following section, Web App Implementation. The pipeline
for the modeling section consists of following stages:

• Data Loading and Preprocessing: Images are shuf-
fled, loaded into batches, and assigned with labels: ’0’
for human-photographed ones and ’1’ for AI-generated
ones. Then, images are resized to match model input
requirement (i.e. 224*224 for ResNet50 and Efficient-
NetB0 and 150*150 for MobileNetV2).

Additionally, EfficientNetB0 and MobileNetV2 nor-
malize images to align with the pixcel value distribu-
tion of corresponding pre-trained models’ expectation,
while ResNet50 applies data augmentation, including
ramdom flips, rotations, and color adjustments, to im-
prove generalizability of model.

• Data Split: Images are stratifiedly splitted into training
(60%), validation (20%), and test (20%) subsets.

• Model Setup: Model architectures for ResNet50, Mo-
bileNetV2, and EfficientNetB0 are configured. Output
layer is modified for binary classification task. Mod-
els are compiled with the Adam optimizer due to its
adaptive learning rate capabilities, alongside a binary

cross-entropy loss function, which is standard for bi-
nary classification tasks.

• Training Loop: Each model undergoes 10-epoch train-
ing, with validation after each iteration.

• Model Evaluation: Model evaluation metrics, imple-
mented on each scenery type, cover F1-score, precision,
and recall, providing a comprehensive view of model
performance across potential class imbalances.

Figure 4. Modeling Pipeline

3.3. Model Architecture, Adaptation, and Finetuning

3.3.1. RESNET50

ResNet50 consists of:

• Conv1: 7x7 convolutional layer with 64 filters and a
stride of 2, followed by max pooling.

• Four layers of bottleneck blocks:



AI-Generated Image Detector

– Layer1 (9 convolutional layers): 3×3,64 kernel
convolution, another with 1×1,64 kernels, and a
third with 1×1,256 kernels. These 3 layers are
repeated 3 times (3 bottleneck blocks).

– Layer2 (12 convolutional layers): 1×1,128 ker-
nels, 3×3,128 kernels, and 1×1,512 kernels, iter-
ated 4 times (4 bottleneck blocks).

– Layer3 (18 convolutional layers): 1×1,256 ker-
nels, and 3×3,256 kernels and 1×1,1024 kernels,
iterated 6 times (6 bottleneck blocks).

– Layer4 (9 convolutional layers): 1×1,512 ker-
nels, 3×3,512 kernels, and 1×1,2048 kernels iter-
ated 3 times (3 bottleneck blocks).

• Average pooling layer followed by a fully connected
layer with 1000 nodes for classification using softmax
activation.

To tailor for binary classification task, we replace the last
fully connected layer to an output layer with two classes.

In our quest to strike a balance between performance and
computational efficiency, we embark on a series of exper-
iments involving various layer finetuning strategies. Ini-
tially, we focus on fine-tuning solely the last layer, which
yields an F1-score of 0.779 with minimal parameter adjust-
ments. However, extending the finetuning to include the
fully-connected layer and the last layer of bottleneck blocks
(Layer4) does not result in a substantial enhancement of the
test F1-score. Our subsequent refinement strategy, encom-
passing finetuning of all layers, leads to the highest F1-score
achieved. This success, however, comes at the cost of dou-
bling the trainable parameters compared to solely finetuning
the last layer and bottleneck block.

Table 1. Finetuning for ResNet50

Finetuned Layers Test F1-Score Trainable Parameters

Last layer 0.779 4,098
Last two layers 0.785 14,968,834
All layers 0.990 23,512,130

Accordingly, since we prioritize high performance, we chose
to deploy ResNet50 model with all layers finetuned.

3.3.2. MOBILENETV2

After the convolutional base, MobileNetV2 introduces sev-
eral custom layers:

• Global Average Pooling 2D: Reduces each feature
map to a single number by taking the average of all
values in the feature map. It helps in reducing the
model’s complexity and computational cost.

• Batch Normalization: Normalizes the activations
from the previous layer, helping to stabilize and ac-
celerate the training process.

• Dropout: Randomly sets input units to 0 with a rate
of 0.5 at each step during training time, which helps
prevent overfitting.

• Dense Layer with Sigmoid Activation: Outputs a
probability indicating the likelihood of the image being
AI-generated.

3.3.3. EFFICIENTNETB0

After leveraging the convolutional base of EfficientNetB0,
several custom layers are added to tailor the model to the
binary classification task:

• Global Average Pooling 2D: Condenses each feature
map to a single value, effectively reducing the dimen-
sionality and focusing on the most salient features.

• Batch Normalization: Normalizes the inputs of each
layer to improve the stability and speed of the training
process.

• Dropout: With a dropout rate of 0.2, randomly omits
units to mitigate overfitting.

• Dense Layer with Softmax Activation: Outouts prob-
abilities for each class.

3.4. Model Performance Comparison

Across all scenery types, the three models—ResNet50, Mo-
bileNetV2, and EfficientNetB0—demonstrated consistent
high accuracy, with F1-scores surpassing 0.98. Notably, all
models excelled in the “forest” scenery, achieving F1-scores,
precision, and recall exceeding 0.99.

Each model displays diverse strengths in distinguishing dif-
ferent types of scenery, with no single scenery type being
universally perfect or worst for all models. Among the mod-
els, EfficientNetB0 emerged as the top performer, achieving
perfect F1-scores, precision, and recall in most scenery
types, except “street”.

Table 2. Performance Metric for ResNet50

SCENERY TYPE F1-SCORE PRECISION RECALL

BUILDINGS 1.00 1.00 1.00
FOREST 0.99 0.99 0.99
GLACIER 0.98 0.98 0.98
MOUNTAIN 0.98 0.98 0.98
SEA 0.98 0.98 0.98
STREET 1.00 1.00 1.00



AI-Generated Image Detector

Table 3. Performance Metric for MobileNetV2

SCENERY TYPE F1-SCORE PRECISION RECALL

BUILDINGS 0.989 1.000 0.977
FOREST 1.000 1.000 1.000
GLACIER 0.996 1.000 0.991
MOUNTAIN 0.995 1.000 0.991
SEA 0.995 1.000 0.990
STREET 0.995 1.000 0.990

Table 4. Performance Metric for EfficientNetB0

SCENERY TYPE F1-SCORE PRECISION RECALL

BUILDINGS 1.000 1.000 1.000
FOREST 1.000 1.000 1.000
GLACIER 1.000 1.000 1.000
MOUNTAIN 1.000 1.000 1.000
SEA 1.000 1.000 1.000
STREET 0.988 0.983 0.970

4. Web App Implementation
Our web application utilizes Streamlit, a flexible frame-
work that facilitates rapid development and deployment of
data-driven applications. The backend leverages a mix of
TensorFlow and PyTorch libraries, showcasing our strategic
use of both ecosystems to efficiently handle different neural
network architectures.

The user interface is intuitively designed to ensure ease of
use, starting with a simple welcome message that explains
the application’s function. Users can upload images via a
streamlined drag-and-drop interface or through a standard
file browsing option. Following the upload, users select
from three different models— ResNet50, MobileNetV2, or
EfficientNetB0—via a sidebar menu, which dynamically
loads the appropriate model based on the selection.

Uploaded images undergo a validation process for file type
and are preprocessed to conform to the input requirements
of the selected model. This preprocessing includes resizing
and normalization steps that are essential for maintaining
consistency in image analysis.

Depending on the model chosen, the detection process
varies. For MobileNetV2, images are processed using
TensorFlow’s image processing capabilities, whereas for
ResNet50 and EfficientNet, PyTorch’s advanced model eval-
uation techniques are employed. This allows us to utilize
specific features from each framework, such as Tensor-
Flow’s efficient image handling and PyTorch’s robust model
manipulation.

Once the analysis is complete, the application provides im-

mediate feedback by displaying whether an image is likely
AI-generated or real. If the image is suspected to be AI-
generated, a prominent alert warns the user, reinforcing the
integrity of digital content.

To optimize performance, the app uses caching techniques
to avoid reloading models during each session, significantly
speeding up response times. Further optimizations include
streamlined image preprocessing and the use of efficient
prediction methods tailored to each model’s specifications.

In summary, by integrating multiple Machine Learning
frameworks and optimizing for performance and usability,
our web application could effectively identify suspicious
images and prevent user deception.

5. Model Explanation Using Grad-CAM
Despite their high classification accuracy, the CNN mod-
els we used function as “black boxes”, which means that
the decision-making processes of the models are non-
transparent. To address this, we employed Grad-CAM
(Gradient-weighted Class Activation Mapping), a visual
explanation algorithm, to pinpoint which parts of an image
most significantly influence model’s final decision. Heatmap
is used to demystify the model’s operations by highlighting
the image regions that are key to its predictions. To be con-
sistent with the model implementing environment, PyTorch
Grad-CAM is applied on ResNet50 and EfficientNetB0,
while Tensorflow Grad-CAM is applied on MobileNetV2.

5.1. ResNet50

5.1.1. MODEL DECISION EXPLANATION

In theory, the heatmap for the last layer (Layer4 for
ResNet50) should display the most accurate visual expla-
nation of the class predicted by the model. To understand
how the ResNet50 model processes decisions, we initially
apply the Grad-CAM heatmap method in PyTorch to the
last bottleneck block of Layer4. However, from the results
obtained, it is evident that there is no discernible pattern
indicating how the model differentiates between real and
AI-generated images.

Figure 5. ResNet50: AI vs Real



AI-Generated Image Detector

While the last layer of ResNet50 model captures abstract
features critical for classification, it might not offer the
clearest visual explanations. Middle layers, like Layer2
and Layer3, reveal finer spatial details and provide more
interpretable visual patterns of specific image features. As
we progress from Layer2 to Layer4, the heatmaps become
more focused, moving from basic structural outlines to spe-
cific areas and details. In the context of building images,
Layer2 emphasizes edges and outlines, Layer3 focuses
on specific parts like corners and windows, and Layer4
intensely highlights unique architectural features.

Figure 6. ResNet50: Layer2 vs Layer3 vs Layer4

5.1.2. MODEL ERROR EXPLANATION

Real images wrongly predicted as AI-generated (False
Negative): When compared to correctly classified images,
those that are wrongly classified exhibit focus on relatively
smaller areas and tend to overlook the main parts of the
image. This observation suggests that inaccuracies in clas-
sification might stem from the model concentrating on less
relevant features rather than the key elements of the image.

Figure 7. ResNet50: False Negative

AI-generated images wrongly predicted as real (False
Positive): We can tell from the classification report that
our model recall of class 0 is 1, which stands for outstand-
ing model capability of identifying AI-generated images.
Browsing through the whole dataset, only 4 AI-generated
images are wrongly predicted as real. Using the Grad-CAM
to root the cause, we can see that the model seems to focus
meaninglessly on the side and corner of the image.

Figure 8. ResNet50: False Positive

5.2. EfficientNetB0

5.2.1. MODEL DECISION EXPLANATION

Comparison with ResNet50: ResNet50’s heatmaps tend
to be more spread out and scattered, highlighting multiple
areas of the image. In contrast, EfficientNetB0 often fo-
cuses on more intense regions. Additionally, the areas of
focus of two CNN models are different for the same image,
indicating differences in how they identify and process key
image features.

Figure 9. Real images that ResNet50 predicted wrongly and Effi-
cientNetB0 classified correctly

5.2.2. MODEL ERROR EXPLANATION

The EfficientNetB0 model outperforms the ResNet50 in
accurately identifying real images. To understand why
ResNet50 often misclassifies, we find out some of those
real images that ResNet50 wrongly predicted but correctly
classified by EfficientNetB0, and compare their heatmaps
differences. Although no global rule can be extracted, this



AI-Generated Image Detector

comparison highlights specific areas within individual im-
ages that help differentiate AI from real images and areas
that are less effective in making this distinction.

Figure 10. ResNet50 vs EfficientNetB0

5.3. MobileNetV2

We also leverage the Grad-CAM technique through Ten-
sorflow to analyze how MobileNetV2 model processes im-
age classification task. Specifically, we compute heatmaps
by tracking the gradients of the highest-impact predictions
at the “out relu” layer of the MobileNetV2 model, high-
lighting the most influential areas in the model’s decision-
making. Then, we overlay the heatmaps on the original
images to showcase where the model focuses its attention,
thus aiding in the interpretation of whether an image is
AI-generated or real. This approach provides a clear visual-
ization of the model’s reasoning by accentuating the most
relevant features in the image classification process.

Figure 11. MobileNetV2: AI vs Real

The Grad-CAM heatmaps vividly show the contrast between
AI-generated and real images: AI-generated images exhibit
chaotic and complex color distributions, reflecting the syn-
thetic complexity, whereas real images feature more orga-
nized and focused hotspots, highlighting the model’s ability
to directly recognize natural features. This difference is
pivotal in effectively distinguishing between the two classes,
offering a clear visualization of how the neural network
processes and interprets varying image characteristics.

According to the evaluation of MobileNetV2, “building”
exhibits the lowest F1-score and recall among six scenery
types. To better understand the cause, we employ the Grad-
CAM method on three layers to determine which offers the

most accurate detection. Furthermore, we use the 99th per-
centile for heatmap normalization instead of the maximum
value, providing a more robust and balanced visualization to
better inform how our model makes decision. By selecting
the optimal layer based on this analysis, we aim to get a bet-
ter understanding why MobileNetV2 has relatively poorer
performance on classifying “building”.

Figure 12. Out Relu vs Block 13 Expand vs Block 16 Project

Based on the comparison of heatmaps corresponding to
different layers as shown in Figure 12, we have decided
to select “Block 13 Expand” layer because of its distinct
clarity and more precise localization of relevant features
compared to the other layers tested. This layer is likely more
effective in providing more accurate insights about how
MobileNetV2 makes decision, which is particularly useful
for improving model performance in classifying “building”.

Figure 13. Block 13 Expand: AI vs Real



AI-Generated Image Detector

Figure 14. Grad-CAM via Block 13 Expand: AI vs Real

Based on the visual comparison shown in Figure 14, apply-
ing heatmap on the “Block 13 Expand” layer has enhanced
the distinction between AI-generated and real scenery im-
ages. This improvement in Explainable AI is marked by
more refined and complex activation patterns in both AI-
generated and real images. AI-generated images now feature
richer textures and gradients, closely mimicking the com-
plexity of real scenes, while real images display clearer and
more accurate natural elements. These enhancements sug-
gest MobileNetV2’s ability to discern finer textural details,
crucial for accurately differentiating between AI-generated
and authentic scenery. However, “Block 13 Expand” layer
also reveals that our model struggles with the accurate iden-
tification of buildings due to its inability to clearly delineate
architectural contours and details, which may lead to lower
classification accuracy for “building” scenes.

6. Conclusion
6.1. Achievement of Goals

Our project has developed an end-to-end web applica-
tion proficient in discerning AI-generated images from au-
thentic photographs with exceptional accuracy. Integrated
with advanced machine learning models—ResNet50, Mo-
bileNetV2, and EfficientNetB0—the tool surpasses industry
benchmarks like C2PA.

Utilizing Grad-CAM for explainable AI has enhanced trans-
parency in classification decisions. While ResNet50 and Ef-
ficientNetB0 showed no discernible patterns, MobileNetV2
revealed differences: AI-generated images exhibited chaotic
color patterns, while photos captured by humans displayed
more organized hotspots, underscoring likely model’s recog-
nition of natural or nonsynetic features. Grad-CAM also
aids in explaining individual image decisions and identi-
fying potential model errors by highlighting prediction-
focused areas, especially useful in complex scenarios like
building scenes.

Successful deployment of this project holds promise for
beneficial social impact, bolstering digital trust and reducing
misinformation by accurately identifying and labeling AI-
generated content.

6.2. Encountered Difficulties

Throughout the project, we encountered several challenges
primarily related to technical aspects of model implementa-
tion. Processing power and memory usage posed significant
constraints, especially with the demanding computational
requirements of sophisticated deep learning models. This
challenge became apparent when handling large datasets
and conducting extensive training sessions, necessitating
high-performance GPUs. To address these issues, we opti-
mized our models and selected a manageable dataset size,
striking a balance between performance and available re-
sources.

Applying Explainable AI presented a key challenge in dis-
cerning globally applicable rules for model decision-making.
Since our objective is to train models to distinguish between
AI-generated and human-photographed images, interpreting
model decision-making processes from heatmaps—more
commonly used for object detection tasks—proved chal-
lenging. To overcome this obstacle, we compared heatmaps
across layers and models to gain insights into their respec-
tive contributions.

6.3. Limitation

One critical deficiency in the modeling session was the lack
of coordination in data transformation methods. Specifically,
MobileNetV2 and EfficientNetB0 underwent data normal-
ization, while ResNet50 did not. Conversely, ResNet50
underwent data augmentation, whereas the other two mod-
els did not. This inconsistency renders the detection results
incomparable. However, the varied approaches also pro-
vided valuable experimentation opportunities, as all three
models achieved high accuracy.

Additionally, the use of two different deep learning frame-
works, PyTorch for ResNet50 and EfficientNetB0 and Ten-
sorFlow for MobileNetV2, posed challenges in explainable
AI and model integration. Despite these challenges, navigat-
ing these diverse frameworks provided our team with unique
experiences into experimentation with different platforms.

The key limitation of applying Explainable AI is the subjec-
tivity of qualitative interpretations, due to the less intuitive
nature of our task compared to object detection tasks. This
leads to a lack of robust and generalizable rules for explain-
ing model’s decision, which can be applied to photographs
other than landscapes.

Furthermore, the lower resolution of images captured by
humans compared to AI-generated ones, resulting in blurred
representations in Explainable AI analysis. Improving data
quality is essential to enhance xAI effectiveness.



AI-Generated Image Detector

6.4. Future Improvements

Looking ahead, there are several areas where our project
can be improved:

• Enhancing Model Generalization: Expanding our
dataset to include a wider variety of image types and
incorporating more diverse AI-generated images will
improve the models’ ability to generalize across differ-
ent contexts and reduce bias.

• Upgrading Computational Resources: Overcoming
hardware constraints by seeking additional funding
or partnerships for access to more advanced compu-
tational resources will enable more extensive training
and handling of larger datasets.

• Incorporating More Advanced AI Tools: Harmo-
nizing frameworks like PyTorch and TensorFlow and
deploying a hybrid approach that combines different
models can enhance performance and xAI capabili-
ties. Tailoring strategies to specific scene types will
boost accuracy and provide a more nuanced under-
standing through xAI, improving our ability to explain
the model’s decision-making processes.

• Enhancing User Experience: Further enhancing the
user interface and experience to make it more intuitive
and responsive is a priority. Feedback loops from users
will be essential for refining the app’s functionality and
usability.

By continuing to refine and enhance our approach, we aim
to maintain the relevance and effectiveness of our tool in
the evolving landscape of digital media authenticity. Our
commitment remains steadfast in supporting the integrity of
content creators’ work and ensuring the trustworthiness of
digital imagery in the marketplace.

7. Reference
Rastogi, A. (2022, March 19). ResNet50 - Dev Genius.
Medium. https://blog.devgenius.io/resnet50-6b42934db431

Reiff, D. (2022, May 12). Understand your Al-
gorithm with Grad-CAM - Towards Data Science.
Medium. https://towardsdatascience.com/understand-your-
algorithm-with-grad-cam-d3b62fce353

ResNet-50: the basics and a quick tutorial. (2023,
May 22). Datagen. https://datagen.tech/guides/computer-
vision/resnet-50/

8. Codebase and Data
Github Link: https://github.com/onlymeTerri/ai-artwork-
detector


