
NomadAI: Intelligent Travel Planning Assistant with LLM and Real-Time Data

Harsh Sharma 1 Gudur Venkata Rajeshwari 1 Shivika Mathur 1 Soumya Haridas 1 Vijit Daroch 1

Abstract
NomadAI is an intelligent travel planning assis-
tant that generates personalized itineraries based
on user preferences and real-time data. By inte-
grating large language models (LLMs) with APIs
such as Amadeus and Google Places, NomadAI
streamlines the travel planning process with dy-
namic itinerary generation, natural language chat
interaction, and detailed trip customization. The
backend leverages FastAPI and Pydantic models
to structure travel-related data, ensuring scalabil-
ity and reliability. This paper details the system
architecture, data models, machine learning tech-
niques, and evaluation metrics used to develop
NomadAI.

Beyond the technical design, NomadAI presents
a commercially scalable solution aimed at both
individual and corporate travel planning markets.
Early-stage evaluation suggests strong user sat-
isfaction, highlighting its potential for broader
industry adoption.

1. Introduction
Travel planning is a complex process that involves re-
searching destinations, comparing options, and organizing
itineraries. Traditional methods are time-consuming and
often fail to adapt to individual preferences. NomadAI ad-
dresses these challenges by combining AI-driven personal-
ization with real-time data integration. The system generates
day-by-day travel plans tailored to user preferences, includ-
ing budget, duration, and interests, while allowing users to
refine their plans interactively through a chat interface.

This paper presents the design and implementation of No-
madAI, focusing on its modular architecture, data models,
and machine learning techniques. The system’s ability to
integrate real-time data from APIs ensures that recommen-
dations are accurate and up-to-date.

In real-world travel scenarios, users often face difficul-
ties reconciling multiple sources of fragmented informa-
tion—such as fluctuating airline prices, varying hotel avail-
abilities, and attraction closures due to unforeseen events.
Additionally, modern travelers expect dynamic planning as-

sistance that can adapt to personal schedules and evolving
travel advisories. NomadAI directly tackles these emerging
challenges by embedding flexibility, personalization, and
real-time awareness into a unified platform.

2. Background and Motivation
The travel industry has seen a surge in demand for person-
alized planning tools, driven by the increasing complex-
ity of travel options and the need for tailored experiences.
However, existing solutions often fall short in addressing
user-specific needs. For instance:

• Static Recommendations: Platforms like Expedia and
TripAdvisor provide generic suggestions that lack
adaptability.

• Limited Real-Time Data: Many systems fail to incor-
porate live data for flights, hotels, and attractions.

• Manual Effort: Users must spend significant time re-
searching and organizing their trips.

NomadAI was developed to overcome these limitations by
integrating AI-driven personalization with real-time data.
The system aims to:

• Enhance user confidence in travel decisions.

• Reduce the time and effort required for planning.

• Provide actionable and realistic itineraries.

Travelers increasingly seek flexible itineraries that adapt to
dynamic conditions, such as health advisories and sudden
schedule changes. NomadAI aligns with these evolving
expectations by providing adaptable, user-centric travel so-
lutions.

3. Literature Review
3.1. Existing Solutions

Platforms like Expedia and TripAdvisor focus on static rec-
ommendations, which lack adaptability to user preferences.

1



NomadAI: Intelligent Travel Planning Assistant

Emerging conversational travel assistants, such as Guide-
Bot, attempt to provide dynamic planning but often fail to
integrate real-time data or generate structured itineraries.

Other notable examples include Mezi and Hopper. Mezi,
later acquired by American Express, attempted personalized
travel planning via chatbots but struggled with scalability
due to limited backend data integration. Hopper introduced
predictive flight pricing but lacked full itinerary customiza-
tion capabilities. These examples illustrate the need for
a solution that not only communicates naturally but also
dynamically composes complete, feasible travel plans.

3.2. Technological Advancements

Recent advancements in large language models (LLMs),
such as OpenAI’s GPT, have enabled systems to generate
coherent and context-aware responses. Retrieval-augmented
generation (RAG) techniques further enhance the accuracy
of AI-generated content by grounding it in external data
sources.

Parallel advancements in cloud infrastructure, scalable API
services, and real-time data analytics have collectively en-
abled the possibility of building end-to-end travel planning
assistants that are both personalized and adaptable.

3.3. Research Gap

While existing solutions provide basic travel recommenda-
tions, they lack:

• Real-time data integration for flights, hotels, and attrac-
tions.

• Structured day-by-day itinerary generation.

• Interactive refinement capabilities through conversa-
tional interfaces.

NomadAI bridges these gaps by combining LLMs with live
API data and a user-friendly interface. It provides both
structured itinerary generation and dynamic conversational
refinement, addressing the shortcomings of prior models.

4. Data Sources
NomadAI relies on a combination of AI models, real-time
travel databases, and user-generated inputs to create per-
sonalized itineraries. The primary data engine is the Ope-
nAI API which powers text generation. To ground the AI-
generated plans in real-world logistics, NomadAI integrates
external live APIs:

Live APIs. All flight and hotel records are fetched on–
demand from the Amadeus Travel APIs, while points-of-
interest (POIs) are pulled from the Google Places API.

No offline preprocessing. Because all data is retrieved
in real time, we do not run a traditional ETL or feature-
engineering pipeline.

5. System Requirements
5.1. Functional Requirements

• Collect user inputs such as origin, destination, travel
dates, budget, and preferences.

• Fetch real-time data for flights, hotels, and points of
interest.

• Generate personalized day-by-day itineraries.

• Allow users to refine itineraries through a chat inter-
face.

• Provide fallback static recommendations in case real-
time data fetching fails.

5.2. Non-Functional Requirements

• Performance: Ensure low latency in fetching and pro-
cessing data.

• Scalability: Handle multiple concurrent users without
degradation in performance.

• Security: Protect user data and ensure compliance with
data privacy regulations.

• Availability: Maintain system uptime above 99.9%
with failover infrastructure.

• Maintainability: Ensure modular code structure to en-
able faster feature updates.

5.3. Technical Stack

• Backend: FastAPI for API development, Pydantic for
data validation.

• Frontend: React.js for building a responsive user inter-
face.

• APIs: Amadeus API for flights and hotels, Google
Places API for attractions.

• AI: OpenAI GPT-4 for itinerary generation and inter-
active chat interface.

6. System Design
NomadAI is designed as a modular system with a clear sep-
aration of concerns between the backend and frontend. The
backend handles data processing, API integration, and busi-
ness logic, while the frontend provides an intuitive interface

2



NomadAI: Intelligent Travel Planning Assistant

for user interaction. This section details the methodologies
and implementation of the system components.

Figure 1. System Architecture

6.1. Backend Design

The backend is implemented using FastAPI, a modern web
framework for building APIs. It integrates with external
services like Amadeus and Google Places APIs and uses
Pydantic models for data validation and serialization. The
backend is responsible for itinerary generation, real-time
data fetching, and user interaction through RESTful APIs.

6.1.1. DATA MODELS

The backend defines several Pydantic models in
travel.py to structure and validate data. These
models ensure consistency and reliability in handling user
inputs and API responses:

• TravelRequest Model: Captures user inputs such as
origin, destination, travel dates, budget, and prefer-
ences. It includes default values for optional fields like
preferences and the number of adults.

• FlightOption Model: Represents flight details, includ-
ing airline, price, origin, destination, and optional fields
such as flight number and times. This model is used to
structure flight data fetched from the Amadeus API.

• HotelOption Model: Captures hotel details such as
name, price per night, star rating, and optional fields
like amenities and distance from the city center.

• Itinerary Model: Structures the travel plan, including
the selected flight, hotel, points of interest, and daily
activities. It also includes fields for the total cost and
available options for flights and hotels.

6.1.2. API INTEGRATIONS

The backend integrates with external APIs to fetch real-time
data:

• Amadeus API: Used to fetch flight and hotel options
based on user inputs. The data is parsed and validated
using the FlightOption and HotelOption models.

• Google Places API: Provides information on points of
interest, including landmarks, attractions, and restau-
rants. The data is structured using the PointOfInterest
model.

Fallback mechanisms are implemented in API integrations
to switch to alternative solutions if a primary service call
fails, ensuring system reliability.

6.1.3. ITINERARY GENERATION

The backend uses the LLMPlanningService class in
llm service.py to generate personalized itineraries.
This service integrates with OpenAI’s GPT-based models to
create day-by-day travel plans.

• Context Preparation: The prepare context method
structures data from flights, hotels, and points of inter-
est into a format suitable for the LLM.

• Itinerary Parsing: The parse itinerary method converts
the LLM’s textual output into a structured Itinerary
object, ensuring that the total cost stays within the
user’s budget.

• Fallback Mechanism: If the LLM fails, the
generate fallback itinerary method creates a simple

itinerary using predefined templates.

6.2. Frontend Design

The frontend is built with React.js and styled using Tailwind
CSS. It provides a responsive and user-friendly interface for
interacting with the system. The frontend communicates
with the backend through RESTful APIs and manages state
using React Context.

3



NomadAI: Intelligent Travel Planning Assistant

Figure 2. NomadAI Homepage

6.2.1. KEY COMPONENTS

The frontend is organized into reusable components, each
responsible for a specific part of the user interface:

• HomePage: The landing page where users can enter
their travel preferences, such as destination, budget,
and interests.

• ItineraryPage: Displays the generated itinerary, in-
cluding selected flights, hotels, and daily activities.
Users can view details and make adjustments.

• ChatWindow: A conversational interface that allows
users to refine their itineraries by interacting with the
system.

• TravelForm: A form component that collects user
inputs, such as origin, destination, travel dates, and
preferences. The data is validated on the frontend
before being sent to the backend.

6.2.2. STATE MANAGEMENT

The frontend uses React Context to manage global state,
such as the current itinerary, user inputs, and loading states.

The TravelContext in TravelContext.jsx pro-
vides a centralized store for managing application state.
TravelProvider in TravelContext.jsx also en-
ables sharing of the global state across the application.

6.2.3. AUDIO GUIDE INTEGRATION

NomadAI includes an audio guide feature to enhance the
travel experience by providing narrated descriptions of dif-
ferent Points of Interests. This feature is particularly bene-
ficial for hands-free interaction and accessibility, allowing
users to listen to detailed information about their prospective
destinations.

Figure 3. Audio Guide

Dynamic Content Generation The audio guide dynam-
ically generates content based on the user’s Points of In-
terests. Textual data is processed and converted into audio
using a state-of-the-art Text-to-Speech (TTS) model.

User Interaction Users can interact with the audio guide
through the frontend interface, with options to play, pause,
or skip audio segments. The audio guide is seamlessly
integrated into the itinerary page in the points of interests
tab, ensuring an intuitive and engaging user experience.

4



NomadAI: Intelligent Travel Planning Assistant

Language Support The current implementation supports
English as the primary language, with plans to expand to
multilingual support in future iterations.

6.2.4. MODEL USED FOR AUDIO GUIDE

The audio guide feature is powered by the TTS
model:tts models/en/ljspeech/tacotron2-DDC

Model Overview The model is based on Tacotron 2, a
neural network architecture designed for high-quality Text-
to-Speech synthesis. It utilizes the LJSpeech dataset, which
ensures natural and expressive speech output in English.

Key Features

• Expressive Voice Generation: The model produces
human-like audio, making the audio guide engaging
and easy to follow.

• Customizable Parameters: The model allows adjust-
ments to pitch, speed, and volume, enabling tailored
audio output to suit user preferences.

Integration The backend processes textual descriptions
of destinations and sends them to the TTS model for audio
generation. The generated audio files are cached and served
to the frontend for playback, ensuring low latency and a
smooth user experience.

6.2.5. API SERVICES

The frontend communicates with the backend using service
modules in the services folder:

• amadeus.js: Handles API calls for fetching flight and
hotel data.

• googlePlaces.js: Fetches points of interest based on
user preferences.

• llm.js: Manages interactions with the LLM, such as
generating itineraries and handling chat messages.

6.2.6. INTERACTIVE FEATURES

The frontend includes several interactive features to enhance
the user experience:

• Tabbed Interface: The TabbedItinerary com-
ponent organizes itinerary details into tabs for easy
navigation.

• Dynamic Updates: Users can update their flight or
hotel selections, and the changes are reflected in real-
time by calling the backend’s update endpoints.

• Error Handling: The frontend displays user-friendly
error messages when API calls fail or inputs are invalid.

6.2.7. WORKFLOW

The frontend workflow is as follows:

1. User Input: The user enters their travel preferences
through the TravelForm component.

2. Data Validation: The input is validated on the frontend
and sent to the backend as a TravelRequest object.

3. API Calls: The backend fetches real-time data and
generates an itinerary.

4. Itinerary Display: The generated itinerary is displayed
on the ItineraryPage, where users can view and
refine their plans.

5. Interactive Refinement: Users can refine the itinerary
through the ChatWindow, triggering updates in the
backend.

6.3. System Workflow

The overall workflow of NomadAI is as follows:

1. Input Collection: The user provides travel details (ori-
gin, destination, dates, budget, preferences) through
the frontend.

2. Data Processing: The backend validates the input and
fetches real-time data from external APIs.

3. Itinerary Generation: The LLM generates a person-
alized itinerary based on the user’s preferences and
constraints.

4. User Interaction: The frontend displays the itinerary
and allows users to refine it through interactive fea-
tures.

5. Updates and Feedback: The backend processes user
updates and provides real-time feedback.

6.4. Error Handling and Logging

NomadAI incorporates a robust error-handling and logging
framework to ensure system reliability, maintainability, and
ease of debugging. These mechanisms are critical for man-
aging unexpected issues, providing meaningful feedback to
developers, and maintaining a seamless user experience for
travelers.

Error Handling

• API Integration Errors: The system integrates with
external APIs such as OpenAI, Amadeus, and Google
Places. To handle potential failures (e.g., network is-
sues, invalid responses), try except blocks are used

5



NomadAI: Intelligent Travel Planning Assistant

extensively. For example, during itinerary generation
using OpenAI’s LLM, any exceptions (e.g., API time-
outs or invalid responses) are caught, logged, and han-
dled gracefully. If the LLM fails, a fallback itinerary is
generated to ensure users still receive a response.

• Fallback Mechanism: When critical operations fail,
such as generating an itinerary with the LLM, the sys-
tem provides a simplified fallback itinerary. This fall-
back includes basic travel recommendations, such as
flights, accommodations, and a day-by-day plan, en-
suring continuity of service even during failures.

• Input Validation: User inputs and API responses are
validated using structured models to ensure data consis-
tency. Invalid inputs are caught early, and descriptive
error messages are returned to the user, preventing
downstream errors.

• Graceful Degradation: If a critical service (e.g., Ope-
nAI or Amadeus) is unavailable, the system falls back
to static template. This ensures that users receive a
response even when real-time data is inaccessible.

• User-Friendly Error Messages: When errors occur,
the system provides clear and actionable error mes-
sages to users. For example, if an itinerary cannot be
generated due to an API failure, the user is informed
with a message like: “I’m sorry, I encountered an error
while processing your request. Please try again.”

Logging

• Centralized Logging Framework: The backend uses
Python’s logging module to log messages at various
severity levels, such as INFO, WARNING, and ERROR.
A centralized logger is initialized to ensure all logs are
tagged with the module name for easy identification.

• Error Logging: Errors encountered during critical
operations, such as API calls or itinerary generation,
are logged with detailed messages. For example, if the
LLM fails to generate an itinerary, the error is logged
with the message: “Error generating itinerary with
LLM: [error details]”. This helps developers quickly
identify and resolve issues.

• Informational Logging: Key events, such as success-
ful API calls or itinerary generation, are logged at the
INFO level to provide visibility into the system’s nor-
mal operations. For example, successful retrieval of
flight data from Amadeus is logged with the message:

“Successfully fetched flight data from Amadeus API.”

• Environment-Specific Logging: The logging level is
configurable based on the environment (e.g., develop-
ment or production). In development, detailed logs

(e.g., DEBUG level) are enabled, while in production,
only critical logs (e.g., ERROR level) are recorded to
optimize performance and reduce noise.

• Structured Logs: Logs are structured to include rel-
evant details, such as the operation being performed
and associated data. This makes it easier to trace issues
during debugging or when analyzing logs in produc-
tion.

Benefits of Error Handling and Logging

• Improved Debugging: Detailed logs help developers
quickly identify and resolve issues during development
and production.

• Enhanced Reliability: The fallback mechanisms en-
sure that the system remains functional even when
critical components fail.

• User Satisfaction: By providing clear error messages
and fallback responses, the system maintains a seam-
less user experience.

• Scalability: The structured logging framework and
robust error handling make the system easier to monitor
and maintain as it scales.

7. Machine Learning and Prompt Engineering
NomadAI leverages OpenAI’s GPT-4 to generate personal-
ized travel itineraries. The integration of LLMs with real-
time data ensures that the generated itineraries are both rel-
evant and actionable. This section explains the techniques
and methodologies used to integrate LLMs into the system.

7.1. Prompt Engineering

Prompt engineering is a critical component of the system,
as it ensures that the LLM generates coherent and relevant
itineraries. The following techniques are used:

• Template-Based Prompts: Static templates are com-
bined with dynamic user data (e.g., preferences, budget,
and real-time API data) to create structured prompts.

• Contextualization: The system provides detailed con-
text to the LLM, including:

– User preferences (e.g., ”adventure,” ”relaxation”).
– Available flight and hotel options fetched from

the Amadeus API.
– Points of interest (POIs) fetched from the Google

Places API.
– Constraints such as budget, duration, and travel

dates.

6



NomadAI: Intelligent Travel Planning Assistant

• Iterative Refinement: Users can refine their itineraries
through the chat interface. The system re-prompts the
LLM with updated constraints or preferences, enabling
dynamic updates to the itinerary.

7.2. LLM Integration

The LLM is integrated into the backend using the OpenAI
API. The integration process involves the following steps:

• Data Preparation: The backend structures user inputs,
flight and hotel options, and POIs into a JSON-like
format suitable for the LLM.

• Prompt Submission: The prepared data is sent to the
LLM via the OpenAI API.

• Response Parsing: The LLM’s response is parsed into
structured data (e.g., Itinerary model) to ensure com-
patibility with the system’s data flow.

• Fallback Mechanism: If the LLM fails to generate a
valid response, a fallback itinerary is created using
predefined template.

Fallback template includes a generalized itinerary based on
the user’s travel preferences like duration, origin, destina-
tion in order to mitigate user dissatisfaction and provide a
generalized trip suggestion.

7.3. Challenges and Mitigations

• Hallucination: The LLM may generate unrealistic or
irrelevant suggestions. This is mitigated by anchoring
prompts to real-time API data and validating the output
against user constraints.

• Latency: Generating itineraries can be time-consuming
due to the complexity of prompts. Asynchronous API
calls and caching mechanisms are used to improve
performance.

• Over-constraining: When excessive constraints reduce
plan feasibility, NomadAI prompts users to relax con-
ditions or extend budgets dynamically.

• Test Mode: Owing to resource constraints, test mode
for Amadeus API is being used leading to constrained
travel information. This can be mitigated by using a
production key with extended travel information avail-
able.

8. Deployment and Maintenance
8.1. Deployment Process

The system is deployed locally, ensuring high availability
and scalability.

8.2. Maintenance Plan

Regular updates are planned to incorporate new features,
improve performance, and address user feedback.

In addition, prompt error handling and logging techniques
are implemented for efficient problem identification and
solving in order to enable seamless User Experience.

8.3. Success Metrics

• User Satisfaction: Measured through surveys and
feedback. Users rate the relevance, accuracy, and us-
ability of the generated itineraries on a scale of 1 to
5.

• Planning Efficiency: The time taken to plan a trip
using NomadAI is compared to traditional methods.
A significant reduction in planning time indicates suc-
cess.

• Itinerary Realism: The generated itineraries are vali-
dated against actual travel costs and logistics to ensure
feasibility.

8.4. Experimental Setup

• Participants: A group of around 10 users with varying
travel preferences tested the system.

• Comparison: NomadAI was compared with manual
planning and existing travel platforms.

• Metrics: Usability, satisfaction, and output coherence
were rated by participants.

8.5. Results

• User Satisfaction: 80% of participants rated the sys-
tem as useful.

• Planning Efficiency: The average planning time was
reduced by 60% compared to manual methods.

• Itinerary Realism: 90% of the generated itineraries
were deemed realistic and actionable.

A proposed itinerary for a 5-day trip from Singapore to
Bengaluru along with the chat interface for modifications
can be viewed in the Appendix.

9. Ethical Considerations
NomadAI acknowledges the ethical implications of AI-
driven travel planning. Key considerations include:

• Bias in Recommendations: AI systems can inadver-
tently favor popular destinations or activities, reinforc-
ing biases. NomadAI mitigates this by diversifying

7



NomadAI: Intelligent Travel Planning Assistant

recommendations and including underrepresented re-
gions.

• Environmental Impact: Over-tourism can strain local
ecosystems. NomadAI promotes sustainable travel
options and encourages users to explore less crowded
destinations.

• Data Privacy: User data is handled securely and is not
shared with third parties without consent. The system
adheres to data protection regulations to ensure user
trust.

10. Business Implementation
NomadAI is designed not only as a technical solution but
also as a scalable business model that can generate revenue
and provide value to users. This section outlines the business
implementation strategy.

10.1. Target Audience

NomadAI caters to a wide range of users, including:

• Frequent Travelers: Individuals who travel often and
seek efficient planning tools.

• First-Time Travelers: Users who need guidance and
personalized recommendations.

• Corporate Clients: Businesses looking to streamline
travel planning for employees.

• Travel Agencies: Agencies that can use NomadAI as a
backend service for itinerary generation.

The platform is also positioned to serve travel bloggers,
destination marketing organizations, and local tour operators
through API integrations and affiliate models.

10.2. Revenue Model

NomadAI employs a multi-faceted revenue model:

• Subscription Plans:

– Basic Plan: Free access with limited features (e.g.,
basic itinerary generation).

– Premium Plan: Paid subscription offering ad-
vanced features such as real-time updates, detailed
itineraries, and chat-based refinement.

• Affiliate Partnerships:

– Earn commissions by integrating with booking
platforms (e.g., flights, hotels, and activities).

– Partner with travel agencies and tourism boards
to promote specific destinations.

• API Licensing:

– Offer NomadAI’s itinerary generation API as a
service to third-party platforms, such as travel
agencies and corporate travel management sys-
tems.

• Advertising:

– Display targeted ads for travel-related services,
such as insurance, car rentals, and local tours.

NomadAI’s SaaS offering is inspired by models like Hopper
B2B and Skyscanner white-label solutions, focusing on
subscription APIs and licensing for steady revenue streams.

10.3. Market Differentiation

NomadAI differentiates itself from competitors through:

• Personalization: Tailored itineraries based on user pref-
erences and real-time data.

• Interactive Refinement: Chat-based interface for dy-
namic updates.

• Real-Time Data Integration: Accurate and up-to-date
recommendations for flights, hotels, and attractions.

In addition, NomadAI emphasizes itinerary coherence
across multiple days, reducing inconsistencies found in
many other AI planning solutions.

10.4. Scalability

NomadAI’s modular architecture ensures scalability:

• Geographic Expansion: Add support for more regions
and languages.

• Feature Expansion: Introduce new features, such as
group travel planning and voice-based interaction.

• Partnerships: Collaborate with global travel platforms
to expand the user base.

Moreover, upcoming integration with GPT-5 and future
Amadeus APIs will enhance scalability and personalization
depth further.

11. Impact and Future Work
NomadAI has the potential to transform travel planning by
making it accessible, efficient, and enjoyable. This section
highlights the system’s impact and outlines future enhance-
ments.

8



NomadAI: Intelligent Travel Planning Assistant

11.1. Impact

• Accessibility: Simplifies travel planning for users with
limited time or expertise.

• Efficiency: Reduces the time and effort required to
plan a trip by automating itinerary generation.

• Personalization: Provides highly personalized recom-
mendations tailored to individual preferences, enhanc-
ing user satisfaction.

The platform also reduces user decision fatigue by present-
ing curated, feasible options rather than overwhelming users
with limitless choices.

11.2. Future Work

• End-to-End Booking Integration: Integrate with book-
ing platforms to allow users to book flights, hotels, and
activities directly through the system.

• Voice-Based Interaction: Add support for voice com-
mands to enable hands-free travel planning, making
the system more accessible.

• Geographic Expansion: Expand the system to support
more regions and languages, ensuring inclusivity for a
global audience.

• Sustainability Metrics: Incorporate metrics to evaluate
the environmental impact of itineraries and promote
eco-friendly travel options.

• Model Drift Monitoring: Implement regular audits
to detect potential model drift and retrain prompts as
necessary.

12. Conclusion
NomadAI demonstrates how AI and real-time data can trans-
form traditional travel planning into an intelligent, seamless
experience. By integrating LLMs with trusted APIs, the sys-
tem provides personalized, actionable itineraries that cater
to diverse user preferences. The modular architecture en-
sures that NomadAI can evolve to meet future demands,
making it a valuable tool for travelers worldwide.

Continued innovations such as booking integration,
sustainability-focused suggestions, and voice-based plan-
ning will ensure that NomadAI remains a market leader in
intelligent travel planning tools.

References
Amadeus. Amadeus for developers documentation. https:
//developers.amadeus.com, 2025. Accessed:
Apr. 27, 2025.

Google. Google places api documentation.
https://developers.google.com/maps/
documentation/places, 2025. Accessed: Apr. 27,
2025.

Gruber, J. Markdown syntax documentation.
https://daringfireball.net/projects/
markdown/syntax, 2025. Accessed: Apr. 27, 2025.

OpenAI. Openai api documentation. https://
platform.openai.com/docs, 2025. Accessed:
Apr. 27, 2025.

Pydantic. Pydantic documentation. https://docs.
pydantic.dev, 2025. Accessed: Apr. 27, 2025.

Python Software Foundation. Json — python standard
library documentation. https://docs.python.
org/3/library/json.html, 2025a. Accessed:
Apr. 27, 2025.

Python Software Foundation. Logging — python standard
library documentation. https://docs.python.
org/3/library/logging.html, 2025b. Ac-
cessed: Apr. 27, 2025.

Python Software Foundation. re — regular expres-
sion operations. https://docs.python.org/3/
library/re.html, 2025c. Accessed: Apr. 27, 2025.

Python Software Foundation. Uuid — python standard
library documentation. https://docs.python.
org/3/library/uuid.html, 2025d. Accessed:
Apr. 27, 2025.

Ramı́rez, S. Fastapi documentation. https://fastapi.
tiangolo.com, 2025. Accessed: Apr. 27, 2025.

Github links to code The code to NomadAI has been
uploaded to Github in two reporsitories for Frontend and
Backend. Each repository constitutes a README for
reference purposes.

Frontend Repository: https://github.com/
harshvs4/nomadai-frontend

Backend Repository: https://github.com/
harshvs4/nomadai-backend

9

https://developers.amadeus.com
https://developers.amadeus.com
https://developers.google.com/maps/documentation/places
https://developers.google.com/maps/documentation/places
https://daringfireball.net/projects/markdown/syntax
https://daringfireball.net/projects/markdown/syntax
https://platform.openai.com/docs
https://platform.openai.com/docs
https://docs.pydantic.dev
https://docs.pydantic.dev
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/uuid.html
https://docs.python.org/3/library/uuid.html
https://fastapi.tiangolo.com
https://fastapi.tiangolo.com
https://github.com/harshvs4/nomadai-frontend
https://github.com/harshvs4/nomadai-frontend
https://github.com/harshvs4/nomadai-backend
https://github.com/harshvs4/nomadai-backend


NomadAI: Intelligent Travel Planning Assistant

Appendix
Generated itinerary for a 5-day trip from Singapore to Bengaluru

10



NomadAI: Intelligent Travel Planning Assistant

Figure 4. Step 1: Homepage with preferences
11



NomadAI: Intelligent Travel Planning Assistant

Figure 5. Step 2: Itinerary Overview
12



NomadAI: Intelligent Travel Planning Assistant

Figure 6. Step 2: Itinerary Continued
13



NomadAI: Intelligent Travel Planning Assistant

Figure 7. Day-to-Day Schedule
14



NomadAI: Intelligent Travel Planning Assistant

Figure 8. Audio Integration for POI
15



NomadAI: Intelligent Travel Planning Assistant

Figure 9. Chat Interface
16



NomadAI: Intelligent Travel Planning Assistant

Figure 10. Chat Interface Continued
17


