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Abstract 

This project presents an LLM-powered system 
designed to enhance healthcare quality 
improvement (QIP) workflows by bridging gaps 
in data analysis and evidence synthesis among 
clinicians. Leveraging a synthesized hospital SQL 
database and a vectorized archive of historical 
QIP posters, two specialized agents were 
developed: a Poster RAG agent for document 
retrieval and summarization, and a Text-to-SQL 
agent for structured data querying. Both agents 
are orchestrated through LangGraph, a free and 
open-source framework for building graph-based, 
multi-agent workflows with persistent state 
management. Rigorous evaluation using 
LangSmith observability tools, RAGAS retrieval 
metrics, and SPIDER-based SQL benchmarks 
demonstrate the system’s capability to provide 
accurate, context-grounded insights, while 
highlighting areas for future improvement in 
scalability, multimodal retrieval, and faithfulness 
optimization 

1.  Introduction 

1.1  Background 

Within Singapore’s dynamic healthcare ecosystem, 
hospitals churn out dozens of quality improvement projects 
(QIPs) annually as part of medical residency training or 
institutional performance initiatives. The culmination of 
these dedicated efforts involves the presentation of a 
proposal or a written report at a healthcare conference. 

However, it is known in healthcare that most QIPs fail to 
deliver sustainable results (Ivers et al., 2014) with strong 
implementation – with one key reason being the poor 
execution of identified methodology (Larson et al., 2020). 
Clinicians are required to define and measure the problem 
before proceeding with their initiatives, but many 
personnel lack data expertise (Celi et al., 2016) to continue 
with effective implementations. Coupled with heavy 
clinical and administrative workloads, projects often begin 
without sufficient preparation leading to a high failure rate. 

This project aims to streamline data-driven decision-
making by leveraging Large Language Model (LLM)-
powered solutions to bridge the afore-mentioned skill gaps 
in data analysis and literature review among healthcare 
professionals. By improving access to critical data and 
research, the proposed solution minimizes redundant 
efforts, reduces costs, and enhances the efficiency of 
quality improvement initiatives. 

1.2  Proposed Solution 

The goal is to develop an intuitive LLM-powered chat 
interface that facilitates clinicians to streamline and 
optimize their research workflow by providing 2 key 
outputs: summaries of past similar projects based on the 
input text queries related to specific QIPs and historical 
hospital performance metrics. The integration of dual 
functionality streamlines the user workflow by 
consolidating research tasks within a unified platform, 
eliminating the need to navigate between different tools 
and promotes a more cohesive research experience.  

Leveraging on a vector database indexed with embeddings 
of past QIP documents, the Poster RAG agent summarizes 
a list of similar internal projects to inform and 
contextualize tried and tested improvement efforts; while 
the Text-to-SQL agent provides data-driven support with 
the retrieval and summarization of historical hospital 
performance metrics relevant to the user’s query extracted 
from the hospital’s database. 

While the two specialized agents are designed to perform 
individual workflows, the user can also choose to enable a 
sequential workflow that enables interaction between the 
Poster RAG agent and the Text-to-SQL agent. Leveraging 
the wealth of data contained within historical QIP 
documents, this connected workflow enables users to 
perform follow-up research by posing nuanced questions 
that connect the information from relevant posters with 
specific hospital data insights. Our solution is designed to 
facilitate generation of insightful connections between 
ideas and data findings, prioritizing transformation of 
abstract concepts into concrete, data-driven insights. 

Considering our emphasis on leveraging internal reference 
materials together with the current workflow to integrate 
new QIP ideas with existing hospital data, the originally 
proposed web search agent – intended for the retrieval of 
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external information has been determined to fall outside the 
boundaries of the current project scope. The existing 
solution infrastructure is deemed sufficient for our target 
audience. 

2.  Dataset Description 

2.1  SQL Tables 

The hospital database utilized in this project consists 
entirely of synthesized data generated through SQL scripts 
based on mathematical distributions. All data was 
randomly and artificially created; no real patient 
information is used at any stage of this project. This 
synthetic dataset serves as the foundation for the Text-to-
SQL component, demonstrating how natural language 
queries can be translated into SQL and executed against a 
structured database. 

A total of 5 table schemas have been curated for the SQL 
database: inpatient_cases, outpatient_cases, 
patient_incidents, patient_wait_times, and 
surgery_metrics. These schemas capture critical data 
related to patient experiences and operational efficiency 
within a hospital system, focusing on the details for each 
patient encounters, adverse events, waiting times, and 
surgical procedures. 

Figure 2.1.1. Sample Entity-Relationship (ER) Diagram of 
table schemas available in a hospital SQL database. 

The inpatient_cases and outpatient_cases 
detail the specifics of each patient’s admissions or visits. 
Both tables track essential medical diagnosis, treatment 
plans, attending physician details, and billing information 
with the notable difference of inpatient_cases 
recording hospital admission details while 
outpatient_cases records the visit date. 

The patient_incidents table is specifically 
designed to record and track adverse events involving 
patients, capturing the type of incident, the date-time of 
occurrence, and information regarding the affected 
patients. This allows for the analysis of incidents in relation 
to inpatient stays, potentially identifying patterns or factors 
associated with specific patient populations or conditions 
relevant to quality improvement. 

The patient_wait_times table provides a detailed 
breakdown of the time spent by outpatients at various 
stages of their visit – appointment, registration, triage, 

consultation, to billing and pharmacy. The captured 
timestamps at each key step along with the total time spent 
enables a granular analysis of patient flow and bottlenecks 
in the outpatient process. 

Finally, the surgery_metrics table focuses on 
capturing a comprehensive set of data related to surgical 
procedures. Beyond surgery procedure information, it also 
includes critical surgery metrics such as blood loss, patient 
complications, and readmission rates. 

An SQLite database file (bt5153_gp.db) was populated 
with generated data based on the defined schema 
structures. This database serves as a centralized repository 
that closely represents a hospital database, for data retrieval 
and analysis purposes to be used for the Text-to-SQL 
agent. 

2.2  Medical Posters 

The medical QI posters used in this project are publicly 
available from the Singapore Healthcare Management 
Congress: Singapore Healthcare Management Congress - 
Poster Exhibition (Singapore Health Services, n.d.). 

31 medical posters from 2021 to 2024 across various 
hospitals have been systematically extracted and prepared 
for in-depth analysis in PDF format. These posters possess 
key attributes such as the originating hospital, thematic 
category, medical department, implementation results and 
key findings. The rich amount of metadata within each 
poster that can be extracted ensures that analysis can be 
focused on specific areas of interest, enabling comparative 
studies and identification of best practices within the 
specific area of interest in quality improvement initiatives 
across medical institutions. 

Pre-processing of the documents involve a multi-stage 
approach to extract the structure and relevant information 
prior to the content conversion into vector embeddings. 
Recognizing that the posters are present in a variation of 
format, this poses a limitation to pre-process all posters 
with a standardized. As such, distinct methodologies are 
developed for more robust content extraction to 
accommodate the structural variations of the posters 
ensuring comprehensive and accurate chunking of 
information. 

Following the pre-processing stage that identifies 
information segmented into crucial portions, the resulting 
metadata and structured textual content undergoes an 
embedding process and stored into a vector database for 
retrieval usage by the Poster RAG agent. 

3.  LLM overview & techniques 

3.1  LLM Overview 

Large Language Models (LLMs) have emerged as 
transformative tools for information processing and 
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decision support across numerous domains. Recent 
advances in mid-sized models like Llama 3 (Meta, 2024) 
and Mistral (Le Scao et al., 2023) have demonstrated that 
models with 7-13B parameters can achieve performance 
comparable to much larger counterparts when properly 
optimized. These developments have made sophisticated 
NLP capabilities more accessible for specialized 
applications like healthcare, where computational 
efficiency must be balanced with performance 
(Thirunavukarasu et al., 2023). LLMs offer particular value 
in healthcare quality improvement by automating 
information synthesis, standardizing knowledge 
extraction, and supporting decision-making—tasks that 
traditionally require extensive manual effort by clinicians 
with limited data analysis expertise (Singhal et al., 2023). 

For the Poster RAG agent, we implement a Retrieval-
Augmented Generation (RAG) architecture that grounds 
LLM outputs in domain-specific knowledge, reducing 
hallucinations while enhancing factual accuracy in 
healthcare contexts (Lewis et al., 2020). RAG systems 
have shown particular promise in healthcare applications 
where factual correctness is critical (Yang et al., 2025). The 
Poster RAG agent employs a dual chunking strategy—
utilizing both full-poster and section-level chunks—to 
balance comprehensive context with precise information 
retrieval, following established practices in RAG system 
design (Gao et al., 2023). 

For the Text-to-SQL agent, our implementation focuses on 
effective query generation with built-in error handling 
mechanisms. The agent first analyzes user input for 
relevance to the database schema, then generates SQL 
queries appropriate to the detected information needs. 
Recent studies highlight the importance of schema 
awareness in text-to-SQL systems (Liu et al., 2023), which 
we incorporate through explicit database structure analysis. 
A recursive refinement process improves query accuracy 
by providing error messages back to the query generation 
component for up to three retry attempts (Zeng et al., 
2022). This approach significantly enhances the robustness 
of database interactions without requiring users to possess 
SQL expertise, addressing known challenges in text-to-
SQL parsing robustness. 

Agentic AI refers to advanced artificial intelligence 
systems where autonomous agents-often powered by large 
language models-can independently interpret context, 
make decisions, plan and execute multi-step actions, and 
adapt their behavior based on feedback and changing 
objectives, all with minimal human oversight. (IBM, 2025; 
Domo, 2025). Unlike traditional rule-based or generative 
AI, agentic AI systems are goal-oriented, capable of 
decomposing complex queries, iteratively refining their 
outputs, and integrating data from multiple sources or tools 
to achieve specific outcomes. This adaptability and 
autonomy allow agentic AI to handle ambiguous, multi-
faceted, or evolving tasks, making it ideal for domains like 
healthcare, where evidence synthesis and dynamic 
problem-solving are crucial (Weights & Biases, 2025). 

To operationalize agentic AI in our project, we adopt 
LangGraph — a specialized framework designed to build 
stateful, graph-based, multi-agent workflows for LLMs. In 
LangGraph, each agent or function is represented as a node 
within a directed graph, enabling flexible, non-linear 
execution with persistent memory and dynamic decision-
making across the workflow. This architecture supports 
modularity, robust error handling, and human-in-the-loop 
interventions where needed. By leveraging LangGraph’s 
capabilities, our system orchestrates specialized agents to 
deliver a highly adaptive, transparent, and resilient 
research support tool for healthcare quality improvement 
initiatives. The next section details the design and 
development of these agents within our platform. 

3.2  LLM Application- Technical Stack 

This project adopts a fully local, privacy-preserving 
architecture tailored for healthcare environments where 
data confidentiality is critical. The system integrates 
several core components. Weaviate, deployed via Docker, 
serves as the local vector database for storing and 
retrieving medical poster embeddings, utilizing the 
text2vec-ollama and generative-ollama modules. 
LangGraph is employed to build stateful, multi-agent 
workflows that coordinate the Retrieval-Augmented 
Generation (RAG) and Text-to-SQL agents. All language 
models are hosted locally through Ollama, enabling the use 
of models such as Llama 3 and Qwen2.5 (7B, 14B, and 32B 
variants) without making external API calls. This 
guarantees that no sensitive data leaves the local 
environment. 

The user interface is powered by Streamlit, providing an 
intuitive, browser-based conversational interface that 
consolidates both poster retrieval and hospital data 
querying workflows. Hospital operational data is stored in 
a local SQLite database containing entirely synthetic 
information to simulate realistic query tasks without 
exposing real patient data. This fully localized design 
ensures end-to-end control, security, and compliance with 
strict healthcare data privacy requirements. 

4.  Agent Design & Development 

4.1  Poster Search Agent 

The Poster Search Agent is designed to provide users with 
relevant information retrieved from the database of Quality 
Improvement Posters (QIPs), leveraging a structured 
Langgraph workflow for efficient and accurate retrieval.  

Traditional linear RAG workflows, which perform passive 
single-shot retrieval based on the user’s query, are 
insufficient for healthcare QIP contexts characterized by 
ambiguous, multi-faceted, and under-specified questions. 
Our agentic RAG architecture instead introduces dynamic 
decision points: initial relevance validation, metadata-
driven pre-filtering, retrieval quality grading, and iterative 



LLM-Powered Multi-Agent Framework for Quality Improvement in Healthcare 

4 

 
 

 

query rewriting, enabling active correction and contextual 
refinement during retrieval. This agentic design sharply 
improves retrieval precision, semantic alignment, and 
robustness against query failure modes – critical in clinical 
research environments where irrelevant outputs erode user 
trust, waste clinician time, and undermine project 
outcomes. Although agentic flows increase system 
complexity and marginally impact latency, the ability to 
reason, adapt, and self-correct is essential for sustaining 
user confidence and delivering reliable support to QIP 
initiatives. 

To optimize retrieval performance in our RAG system, we 
implemented a dual chunking strategy that balances 
semantic coherence with retrieval granularity. Recognizing 
variability in posters layouts (Appendix A2), two chunking 
methods were applied: 

1) Full-poster-level chunking: Preserve complete 
project narratives, supporting complex cross-
sectional queries, and at the 

2) Section-level chunking: Enhance precision for fine-
grained information needs (e.g., Introduction, 
Methods, Results). Layout parsing models (e.g. PDF 
layout models) and semantic segmentation 
techniques were employed to accurately detect 
section boundaries for section-level chunking, 
ensuring that critical information remains intact and 
contextually coherent for accurate and complete 
information retrieval. 

To align retrieval with user intent, we implemented a two-
tier RAG workflow: initial queries retrieve from section-
based chunks for targeted relevance, and from the relevant 
projects identified, a secondary retrieval pulls the full 
posters to provide holistic context for deeper exploration. 
This dynamic adjustment of retrieval granularity mirrors 
natural clinical reasoning patterns—moving from focused 
evidence to broader case understanding—and enhances 
both semantic alignment and user trust. Although it 
introduces additional system complexity, this architecture 
significantly improves retrieval resilience, precision, and 
the overall quality of interaction in high-stakes, healthcare-
focused RAG environments. 

The process begins with the user posing a question, where 
the initial relevance_check node determines if the user's 
query aligns with the established scope and relevance to a 
medical theme and focus on quality improvement 
initiatives. This ensures that relevant information can be 
retrieved within the system, else the user will be prompted 
to clarify their question. 

Upon confirming query relevance, the agent proceeds to 
the retrieve_poster node, where metadata filtering is 
applied to identify relevant attributes within the vectorized 
document database. This metadata-driven approach 
enhances retrieval precision by prioritizing documents that 
more directly address the user's intent. At this stage, a loose 
semantic similarity threshold (e.g., 0.5) is applied, with 
final relevance scoring and filtering delegated to the LLM 

for deeper semantic evaluation beyond surface-level 
similarity. 

After the retrieval, all relevant chunks are collectively 
evaluated by a secondary LLM to assess their combined 
relevance to the user’s query. This holistic evaluation 
considers the collective informational strength of the 
retrieved set. By analyzing how the chunks interact and 
complement each other, the system ensures that the final 
response is not only individually relevant but contextually 
coherent and fully aligned with the user’s intent. This 
collective assessment significantly enhances the fidelity 
and completeness of the output, especially for complex 
clinical queries requiring multi-source synthesis. 

Subsequently, a structured response is returned to the user, 
comprising the titles of the top-ranked posters, concise 
summaries, and direct links to the original documents for 
easy access. This design promotes traceability, enables 
independent verification of the summarized content, and 
reinforces user confidence in the system's transparency and 
reliability. 

Shall the user's initial query not result in relevant content 
within the existing QIP knowledge base, the agent initiates 
a rewriting process, up to a maximum of 4 tries. 

To enhance the efficiency of poster filtering, users are also 
provided with active controls to refine their search upfront 
by the year and hospital. This feature enables quicker 
access to relevant posters based on predefined contextual 
parameters with a narrower search window. (Appendix A3) 

4.2  Data Search Agent 

The Data Search Agent is designed to process user-
provided text prompts and return summarized results from 
SQL queries for the user. The underlying process, detailed 
in the LangGraph (Appendix A4) outlines the agent's 
architecture and operational steps for user interaction. An 
agentic approach was found to provide better results in 
terms of generated answers and fewer errors, as the agent 
can analyse user inputs in details and evaluate if it needs to 
clarify with the user further when there is not sufficient 
information to perform the query. Also, it can learn from 
any failed query executions to improve its subsequent SQL 
query generation.  

The flow begins when the user provides input being passed 
through the sequence of nodes in the agent: 

1. The format_question node performs a two-step 
process in which it extracts key information from the 
user input question, then evaluates if the key points 
are relevant to the SQL database: 
a. Firstly, the user input is analysed and 

contextualised to the SQL database schema, to 
extract the key answers that the user is looking 
for in the data.  

b. Secondly, these key points are evaluated against 
the database schema and sample data from the 
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tables to determine if the SQL database contains 
the relevant information to answer the user. This 
step is crucial to cover the cases whereby the 
information the user is searching for may be 
within a column value and cannot be found in 
the column header. 

2. The write_query node attempts to generate a SQL 
query based on the analysed user input from the 
previous node and the SQL database schema 
information. The LLM is prompted with good 
practices such as SQL syntax, especially multi-table 
query related ones such as JOIN and UNION which 
it struggles with more, along with reminder to follow 
SQLite database specific syntax, to help it generate 
SQL codes more accurately. The resulting SQL query 
is subsequently cleaned and pre-processed to ensure 
compatibility with existing SQL server. 

3. The execute_query node attempts to run the generated 
SQL query against the database. Shall the query 
executes successfully, the results are passed to the 
generate_answer node; else if the query fails, the error 
message is passed back to the previous write_query 
node for it to retry its SQL query generation with the 
error message providing additional context. A max 
limit of 3 retries is set to avoid infinite loops of retries, 
when it occurs, the error message will be passed 
forward instead, indicating SQL code generation is 
not possible. 

4. Finally, generate_answer node compiles the user's 
original question, the SQL query, and the returned 
results to generate a natural language answer. 
Additionally, the prompt is also used to guide the 
generated answer to provide more explainability to 
the generated answer by including information on the 
data sources and thought process of the LLM. 

5. Meanwhile, if the agent determines that the user’s 
question could not be answered with the database at 
the format_question node, the flow is routed to the 
clarify_with_user node where the user is prompted 
for clarification.  

6. The final answer at the end of the loop is formatted 
for the user in the format_response node before being 
presented. 

4.3  Dual Agent Orchestration 

Within the main Streamlit UI, 2 app modes are available 
for selection that calls the agents for poster retrieval and 
data generation. The user can seamlessly transition 
between the modes vis an intuitive toggle mechanism, 
optimizing their workflow to suit their specific research 
tasks. 

One key feature of our solution is the seamless integration 
between poster-based retrieval and structured SQL data 
exploration. After answering a user’s query by retrieving 
relevant medical QIP posters, the system intelligently 
suggests three follow-up data questions tailored to the 
user's original intent (Figure 4.3.1). These database 
insights guide clinicians to dive deeper into structured 
databases, allowing them to validate findings, compare 
interventions, or quantify outcomes. This tight coupling 
between unstructured poster insights and structured data 
analytics accelerates clinical decision-making, reduces 
manual effort, and promotes a more rigorous, data-driven 
approach to quality improvement research. 

Figure 4.3.1. Suggested questions generated by the LLM 
for the user as to follow-up after the Poster Search Agent.  

5.  Model Evaluation and Discussion 

The Qwen large language model has been chosen as the 
foundational model due to its consistent top performance 
among open-source models and its built-in support for tool 
calling functionality. To determine the optimal model 
configuration, a comparative analysis was conducted 
across several Qwen variants, specifically evaluating the 
impact of different parameter sizes from the 7B, 14B, and 
32B parameter models. 

Qwen2.5’s selection as our foundational model is further 
validated by its top-tier performance on the Hugging Face 
Open LLM Leaderboard. Specifically, Qwen2.5-7B, 14B, 
and 32B variants consistently rank as the best-performing 
open-source models within their respective parameter 
classes, outperforming peers across key benchmarks such 
as MMLU, BBH, and GSM8K. This external validation 
underscores Qwen2.5's robustness and suitability for our 
healthcare quality improvement tasks, ensuring that our 
comparative analysis is grounded in models that are not 
only theoretically sound but also empirically superior. 

By deploying a uniform underlying Qwen model 
throughout all iteration controls, we ensure that the 
experiment setup guarantees any observed performance 
differences are attributed to the model size and not 
confounded by the inherent differences across the base 
language model itself. This approach enhances the validity 
of our comparative analysis, enabling us to draw more 
accurate and reliable conclusions regarding the 
effectiveness of the development techniques in conjunction 
with the models deployed of varying parameter scales. 
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5.1  LangSmith Evaluation 

LangSmith is a unified observability & evaluation tool for 
LLMs. Our group selected LangSmith for this project as it 
is considered an industry-standard tool for LLM 
monitoring and provides integration with LangChain. 
Using LangSmith, we were able to trace the performance 
of different LLMs used throughout the development 
process and evaluate the trade-offs between latency and 
token usage. In general, higher token consumption 
correlates with increased model latency. While using larger 
models with extended context windows can enhance the 
quality of responses, it also typically results in longer 
runtimes.  

 

Figure 5.1.1. Figure of latency vs. total tokens used. 

An exception to this trend was observed with the 
qwen2.5-32b-ctx6000 model, which specifically 
process cases requiring longer input contexts. As a result, 
its total token usage typically remained within the 15,000-
token range. This more specialized use case naturally 
limited the variation in output length compared to more 
general-purpose models, which may have to handle a wider 
range of inputs and therefore sometimes generate 
significantly longer responses. 

Figure 5.1.2. Figure of Length of LangGraph runs by 
Agent.  

Although most agent runs completed within 20 seconds 
and consumed fewer than 10,000 tokens, violin plots of 
graph length, latency, and token usage revealed the 
presence of outliers. These outlier runs consumed 
substantially more resources than intended, resulting in 
longer runtimes and increased computational costs.  

 

Figure 5.1.3. Latency of LangGraph runs by nodes for 
Poster Search Agent. 

Figure 5.1.4. Latency of LangGraph runs by nodes for Data 
Search Agent.  

A detailed analysis at the node level indicated that the 
majority of these issues were caused by: 

• custom_retriever node (RAG agent): This node 
retrieves relevant poster documents from the database. 
The number of documents retrieved can vary 
depending on input relevance. In certain cases, highly 
relevant inputs triggered the retrieval of a large 
number of documents, significantly increasing token 
consumption. 

• format_question node (SQL query agent): This 
node extracts key questions from user input and 
checks for relevance against the database schema. 
Since the schema itself can consume over 3,000 
tokens, additional tokens are also required for the 
LLM to reason through and formulate the final 
question, resulting in higher token usage. 

• write_query node (SQL query agent): This node 
generates SQL queries using the database schema as 
part of its prompt. Furthermore, it incorporates any 
error messages from previous query execution 
attempts into its input, aiming to refine subsequent 
queries. However, this error-handling mechanism also 
increases the overall token consumption. 

By identifying these bottlenecks, we are better able to 
understand resource usage patterns and can explore more 
safeguards in future iterations to control costs and improve 
performance. 

5.2  Evaluation of Agentic Poster RAG 

The Poster RAG system adopts an agentic retrieval-
augmented generation (RAG) architecture to address the 
complexity inherent in medical quality improvement (QIP) 
queries. Traditional linear RAG systems follow a reactive, 
single-shot retrieval process based solely on the user’s 
query, which is effective for straightforward information 
needs but limited in handling multi-faceted, 
underspecified, or evolving queries typical in QIP contexts. 
In contrast, the agentic RAG design enables dynamic 
decision-making: the system can reason about query 
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relevance before retrieval, decompose complex questions 
into sub-tasks, iteratively refine search queries, and 
validate the quality of retrieved documents (Fluid.ai, 
2024). Leveraging the LangGraph framework, the Poster 
RAG agent performs step-by-step planning, proactively 
screens for query relevance, and grades retrieved contexts 
for alignment, ensuring a higher baseline quality of 
information feeding into the final answer. 

Rigorous evaluation of system performance was conducted 
using the RAGAS framework, assessing five key 
dimensions: context precision, context recall, faithfulness, 
response relevancy, and response similarity. 

To rigorously evaluate our Poster Search Agent under the 
RAGas framework, we curated a test set comprising 28 
queries spanning a gradient of difficulty levels. 
Queries were stratified into three tiers — Level 1 (easiest, 
targeted single-hop), Level 2 (moderate), and Level 3 
(difficult, broad/multi-hop) — based on anticipated 
retrieval and reasoning complexity (Appendix A5). In 
addition to standard queries, we included four edge-case 
queries specifically designed to test the system’s resilience 
against ambiguous, multi-hop, or low-context prompts. 
This deliberate design ensured a comprehensive evaluation 
across common, challenging, and adversarial user 
scenarios, offering a more realistic assessment of system 
robustness and generalization performance. 

Table 5.2.1. RAGAS evaluation metrics across queries of 
different levels of difficulties. 

Query  
difficulty 

Context 
_precision 

Context 
_recall 

Faithful 
-ness 

Response 
_relevancy 

Res 
_similarity 

Avg 
_score 

1 
(easy) 

0.733 0.850 0.661 0.770 0.781 0.759 

2 0.690 0.846 0.577 0.752 0.666 0.706 

3  
(difficult) 

0.717 0.831 0.513 0.601 0.524 0.637 

Average 0.713 0.842 0.584 0.708 0.657 0.701 

The table summarizes RAGAS evaluation metrics across 
queries of varying difficulties. As expected, Level 1 
queries achieved the highest overall scores across all 
metrics, with strong context precision (0.733) and response 
relevancy (0.770). Performance slightly declined for Level 
2 queries, reflecting greater semantic complexity. Level 3 
queries, representing the most difficult prompts, showed 
marked drops in faithfulness (0.513) and response 
similarity (0.524), highlighting challenges in grounding 
answers under limited or fragmented evidence conditions. 
Nevertheless, the system maintained a respectable average 
score of 0.701 across all queries, demonstrating robust 
retrieval, strong contextual reasoning, and resilience even 
under adversarial conditions. 

Table 5.2.2. RAGAS evaluation metrics comparison 
between Qwen2.5 7B vs 14B vs 32B. 
Qwen2.5B 
_paramsize 

Context 
_precision 

Context 
_recall 

Faithful 
-ness 

Response 
_relevancy 

Response 
_similarity 

Average_
score 

32B 0.706 0.844 0.580 0.713 0.658 0.700 
14B 0.666 0.776 0.603 0.645 0.557 0.649 

7B 0.615 0.698 0.485 0.619 0.610 0.605 

Results demonstrate strong retrieval capabilities, 
particularly at larger model scales. Using Qwen2.5-32B, 
the system achieved a context precision of 0.705 and a 
context recall of 0.844, confirming its ability to recover 
most of the critical information from past QIP projects. In 
the medical QIP domain, where comprehensive situational 
awareness across interventions, methodologies, and 
outcomes is vital for project design, high recall is 
especially critical to avoid redundant efforts and missed 
learning opportunities. 

Model scaling effects were clearly observed: Qwen2.5-
32B consistently outperformed 14B and 7B variants across 
all RAGAS metrics, highlighting the advantages of greater 
model capacity for semantically rich domains like QIP. 
However, faithfulness — the strict grounding of generated 
responses in retrieved evidence — remains a notable 
challenge, with the 32B model achieving a score of 0.524. 

The suboptimal faithfulness score highlights the 32B 
model’s limitations in consistently grounding complex 
clinical answers to retrieved evidence. However, the 
significant performance gains observed between the 7B 
and 32B models suggest that scaling to larger models could 
further enhance grounding reliability. 

Recognizing the clinical importance of answer fidelity, our 
solution mitigates this risk by providing direct links to the 
original project posters, allowing users to independently 
verify summarized information and reinforcing 
transparency. 

Addressing this challenge fully beyond raw model size will 
require architectural innovations such as dynamic context 
pruning, retrieval-aware generation scaffolding, and 
answer faithfulness verification mechanisms. 

Overall, the agentic Poster RAG system demonstrates a 
robust foundation for supporting medical QIP research 
workflows. High retrieval recall enables comprehensive 
evidence synthesis, while thoughtful agentic design 
mitigates many common failure modes of traditional RAG. 
Strategic future enhancements aimed at tightening answer 
grounding and expanding multimodal extraction 
capabilities will further optimize the system’s fidelity, 
completeness, and clinical utility. 

5.3  Evaluation of Data Search Agent 

To evaluate the effectiveness of the Text-to-SQL agent, we 
adopt a robust evaluation framework grounded in the 
SPIDER benchmark methodology. A set of 10 diverse 
natural language questions was manually curated by our 
team, with corresponding gold-standard SQL queries 
constructed and validated using SQLite to ensure the 
correctness of ground truth answers. 

Each question was then automatically categorized into one 
of four difficulty levels—easy, medium, hard, or extra 
hard—based on the SPIDER-defined complexity of the 
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gold SQL components. This stratified setup ensures a 
comprehensive assessment of the model’s ability to 
generate queries across a range of complexities. 

The predicted SQL queries are evaluated using two 
primary metrics: exact match and component-level 
(partial) match. 

The exact match requires the predicted query to be 
structurally identical to the gold-standard, resolving issues 
such as clause ordering. In contrast, Partial match 
decomposes the SQL into clause-level components (e.g., 
SELECT, WHERE, GROUP BY, JOIN), treated as bags of 
several sub-components, and measures overlap between 
the predicted and gold components. This allows 
recognition of partial correctness even when full exactness 
is not achieved. 

Given the complexity of real-world SQL constructs, 
including nested queries, aliasing, and aggregation 
functions (e.g., ROUND, CAST, CASE WHEN, IS 
NULL), we observed several parsing failures using 
SPIDER's original evaluation script. To address these 
issues, we introduced targeted modifications to the 
SPIDER process_sql.py parser to improve resilience 
against: 

1. Invalid alias detection during parsing 2. Functions not 
originally supported (e.g., ROUND, CAST, 
TIMESTAMPDIFF) 3. Ambiguous JOIN patterns and long 
subqueries 4. Improper tokenization of NULL-related 
conditions 

These enhancements enabled more accurate parsing of 
complex SQL expressions, which are common in user-
generated prompts for enterprise use cases. 

While these parser adjustments improve practical 
coverage, they may slightly deviate from the strict original 
evaluation semantics of SPIDER. However, they also 
mitigate known limitations, such as the penalization of 
logically equivalent queries that differ only in alias naming 
or clause ordering—issues previously raised in recent work 
(Richard et al., 2024). 

In conclusion, our modified evaluation pipeline, informed 
by SPIDER's methodology and refined for real-world SQL 
structures, provides a more faithful reflection of the 
model's strengths and weaknesses in text-to-SQL 
generation. 

Table 5.3.1. Text to SQL evaluation metrics comparison 
between Qwen2.5 7B vs 14B vs 32B. 

QUESTION/ 
DIFFICULTY EVALUATION QWEN-7B QWEN-14B QWEN-32B 

1-EASY 

EXACT 
MATCH TRUE TRUE TRUE 

EXECUTION 
VALUE TRUE TRUE TRUE 

2-EASY EXACT 
MATCH TRUE TRUE TRUE 

EXECUTION 
VALUE TRUE TRUE TRUE 

3-MEDIUM 

EXACT 
MATCH TRUE FALSE TRUE 

EXECUTION 
VALUE TRUE TRUE TRUE 

4-EASY 

EXACT 
MATCH 

FALSE FALSE TRUE 

EXECUTION 
VALUE 

FALSE TRUE TRUE 

5-EXTRA 

EXACT 
MATCH FALSE FALSE FALSE 

EXECUTION 
VALUE TRUE TRUE TRUE 

6-HARD 

EXACT 
MATCH FALSE TRUE FALSE 

EXECUTION 
VALUE FALSE TRUE FALSE 

7-EXTRA 

EXACT 
MATCH FALSE FALSE FALSE 

EXECUTION 
VALUE FALSE FALSE FALSE 

8-EXTRA 

EXACT 
MATCH FALSE FALSE FALSE 

EXECUTION 
VALUE FALSE FALSE FALSE 

9-EXTRA 

EXACT 
MATCH FALSE FALSE FALSE 

EXECUTION 
VALUE FALSE FALSE FALSE 

10-EXTRA 

EXACT 
MATCH FALSE FALSE FALSE 

EXECUTION 
VALUE FALSE FALSE FALSE 

 

Table 5.3.2. Text to SQL evaluation metrics comparison 
between Qwen2.5 7B vs 14B vs 32B. 

As part of the evaluation, we compared model performance 
using Qwen-7B, Qwen-14B, and Qwen-32B on a custom 
SPIDER-style SQL generation benchmark. Across both 
exact match and execution accuracy (exec match) metrics, 
Qwen-32B consistently outperformed Qwen-7B and 
Qwen-14B. While Qwen-14B achieved execution scores 
comparable to Qwen-32B, we observed that it occasionally 
produced SQL queries with complex expressions or syntax 
(e.g., nested functions, aliases) that the SPIDER evaluation 
parser could not process correctly, leading to some parsing 
failures during exact match evaluation. Nevertheless, the 
underlying execution results remained strong, suggesting 
that Qwen-14B generated semantically correct but 
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syntactically non-standard SQL in some cases (Appendix 
A6). 

For exact matching and partial matching scores, the results 
clearly showed that larger models generally achieved 
higher SPIDER scores, reinforcing the idea that model 
capacity correlates with SQL generation quality in 
structured query tasks. 

Overall, the evaluation confirmed that SPIDER-style exact 
match and partial match scores are effective indicators of a 
model’s ability to generate correct SQL text, even when 
combined with execution-based evaluation for robustness. 

6.  Limitation 

6.1  Poster Search Agent Limitations 

1. While maximizing retrieval recall by including 
broader relevant chunks enriches answer 
completeness, it introduces minor faithfulness risks, 
as larger context windows increase cognitive load on 
the language model and elevate the potential for 
semantic drift. In the medical QIP domain, where 
project fidelity and evidence-based reporting are 
critical, even minor hallucinations can mislead 
subsequent improvement efforts. To mitigate this, 
future work will explore dynamic context pruning 
strategies, selectively narrowing context inputs based 
on relevance scoring and query intent, thereby 
balancing the trade-off between coverage and 
groundedness. 

2. Current text-only extraction pipelines omit a 
significant portion of critical information embedded 
within tables, flow diagrams, and outcome charts, 
which are pervasive in medical QIP posters. This 
blind spot results in incomplete contextual 
understanding and retrieval gaps, particularly for 
metrics-driven projects. Future system iterations will 
integrate multimodal extraction pipelines, combining 
OCR, structured table parsing, and diagram 
captioning, enabling comprehensive semantic 
indexing of both textual and visual elements to 
significantly enhance retrieval quality and answer 
fidelity. 

3. As the volume and semantic richness of QIP posters 
expand, the risk of embedding collapse in low-
dimensional vector spaces intensifies, leading to 
semantic blurring and degraded retrieval precision. 
Without adequate retrieval sophistication, fine-
grained project nuances critical to QIP outcomes may 
be lost. To address this, future development will 
implement higher-dimensional embeddings, multi-
vector retrieval architectures such as CoLBERT, and 
hierarchical retrieval frameworks that preserve 
semantic separability while maintaining scalable, 
efficient retrieval over expanding corpus. 

6.2  SQL Query Agent Limitations 

1. Scalability Challenges with Increasing Database Size 
– the SQL agent relies heavily on the database schema 
to provide essential context when generating queries. 
As the size of the SQL database increases, the schema 
naturally becomes more complex, with complicated 
relationships between tables. Currently, Qwen2.5-
32B is used to handle a SQL database consisting of 
only five tables, and even so, it requires at least 3,000 
tokens — a relatively large context size for a non-
commercial solution. As database complexity scales 
up, more powerful LLM will be necessary to process 
the expanded context effectively and accurately 
interpret the increasingly complicated relationships 
and structures. 

2. Limitations in Handling Execution Errors and Retry 
Mechanisms – another limitation lies in how the agent 
manages execution errors resulting from incorrect 
SQL code generation. To prevent infinite, retry loops 
(where the agent repeatedly attempts to regenerate 
SQL queries without resolving the underlying error) 
the current solution imposes a maximum limit of 
three retries before passing the error to the user. While 
this safeguard is necessary with the current 
capabilities, a more advanced LLM could generate 
correct SQL queries on the first attempt, significantly 
reducing the need for retry limits and error-handling 
mechanisms. 

7.  Conclusion 

This project advances healthcare quality improvement by 
demonstrating how LLM-powered, agentic systems can 
close critical data-literacy gaps among clinicians. Through 
the orchestration of Poster RAG and Text-to-SQL agents 
with LangGraph, we built a modular, resilient workflow 
that enables context-grounded evidence synthesis and 
structured data exploration. Rigorous evaluation confirms 
strong retrieval, reasoning, and robustness, while 
highlighting pathways for future innovation in multimodal 
retrieval, faithfulness optimization, and scalable 
deployment. Our work establishes a strong foundation for 
agentic AI as a catalyst for more rigorous, efficient, and 
data-driven clinical improvement efforts. 
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Appendix 
A1. Source code on GitHub 

https://github.com/BZ269/5153-2025-final-proj-gp2 

A2. Sample QIP Posters 

 

A3. LangGraph for Poster RAG Agent 

 

 

 

 

 

 

 

 

A4. LangGraph for Text-to-SQL Agent 

 

 

 

 

 

 

 

 

 

 

A5. Sample Test Queries for RAGas (Poster RAG) 

[{ "query": "What specific PDSA interventions were tested 
to reduce prescription error rates at Seng Kang 
Polyclinic?", 

    "ground_truth": "SHM_RM054_SHP tested three 
PDSA cycles: (1) standardizing medication charts 
(ineffective), (2) bi-weekly prescription error data and 
interviews with high-error prescribers, and (3) pharmacy 
technicians flagging fragmented prescriptions to reduce 
omissions."}, 

  {"query": "Show me the projects on falls from 2022 by 
SKH.", 

   "ground_truth": "The project SHM_RM001_SKH, titled 
'Reducing Inpatient Falls Related to Toileting Needs', 
conducted at SKH, describes work carried out during 
2022. It focused on targeted toileting interventions, 
visual reminders, and nursing staff training to reduce falls 
specifically related to toileting needs."}, 

  {"query": "Are there QIPs that used environmental or 
physical layout interventions (e.g. ward design, signage, 
chair placement) to reduce patient risks?", 

    "ground_truth": "Projects: SHM_CO005_SKH, 
SHM_RM022_CGH, SHM_RM055_SHP, 
SHM_RM053_SCH, SHM_RM044_SCH — used 
signage, bin placement, ward redesigns, and visual 
reminders."}] 

 

A6. Sample Test Queries for SQL Evaluation (Data 
Search) 

[{“query”: “What is the average billing amount from each 
hospital's outpatient cases?”, 

 “ground_truth”:  

“SELECT hospital_id, AVG(bill_amount)  

FROM outpatient_cases 

GROUP BY hospital_id;”}, 

{“query”: “How many inpatient cases that required 
surgery also had follow-ups?”, 

 “ground_truth”:  

 “SELECT COUNT(*)  

FROM inpatient_cases 

INNER JOIN surgery_metrics ON 
inpatient_cases.patient_id = surgery_metrics.patient_id 

WHERE inpatient_cases.follow_up_date IS NOT 
NULL;”}, 

{“query”: “Which departments have the longest average 
surgery durations and also the highest average length of 
stay? Are these concentrated in specific hospitals?”, 

 “ground_truth”: 

 “SELECT sm.hospital, sm.department, 
AVG(sm.duration) AS avg_surgery_duration, 
AVG(sm.length_of_stay) AS avg_length_of_stay, 
COUNT(sm.surgery_id) AS surgery_count 
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FROM surgery_metrics sm 

GROUP BY sm.hospital, sm.department 

ORDER BY avg_surgery_duration_minutes DESC, 
avg_length_of_stay_days DESC;”}] 
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