LLM-Powered Multi-Agent Framework for Quality Improvement in Healthcare

BT5153 Applied Machine Learning in Business Analytics : Group 02

Benjamin Zhou Ming Xi (A0091098X), Kim Yeontae (A0280486W),
Neo Yuan Khai (A0143408L), Roy Yeo Fu Qiang (A0280541L), Yang Fan (A0139307E)

Abstract

This project presents an LLM-powered system
designed to enhance healthcare quality
improvement (QIP) workflows by bridging gaps
in data analysis and evidence synthesis among
clinicians. Leveraging a synthesized hospital SQL
database and a vectorized archive of historical
QIP posters, two specialized agents were
developed: a Poster RAG agent for document
retrieval and summarization, and a Text-to-SQL
agent for structured data querying. Both agents
are orchestrated through LangGraph, a free and
open-source framework for building graph-based,
multi-agent workflows with persistent state
management. Rigorous evaluation using
LangSmith observability tools, RAGAS retrieval
metrics, and SPIDER-based SQL benchmarks
demonstrate the system’s capability to provide
accurate, context-grounded insights, while
highlighting areas for future improvement in
scalability, multimodal retrieval, and faithfulness
optimization

1. Introduction

1.1 Background

Within Singapore’s dynamic healthcare ecosystem,
hospitals churn out dozens of quality improvement projects
(QIPs) annually as part of medical residency training or
institutional performance initiatives. The culmination of
these dedicated efforts involves the presentation of a
proposal or a written report at a healthcare conference.

However, it is known in healthcare that most QIPs fail to
deliver sustainable results (Ivers et al., 2014) with strong
implementation — with one key reason being the poor
execution of identified methodology (Larson et al., 2020).
Clinicians are required to define and measure the problem
before proceeding with their initiatives, but many
personnel lack data expertise (Celi et al., 2016) to continue
with effective implementations. Coupled with heavy
clinical and administrative workloads, projects often begin
without sufficient preparation leading to a high failure rate.

This project aims to streamline data-driven decision-
making by leveraging Large Language Model (LLM)-
powered solutions to bridge the afore-mentioned skill gaps
in data analysis and literature review among healthcare
professionals. By improving access to critical data and
research, the proposed solution minimizes redundant
efforts, reduces costs, and enhances the efficiency of
quality improvement initiatives.

1.2 Proposed Solution

The goal is to develop an intuitive LLM-powered chat
interface that facilitates clinicians to streamline and
optimize their research workflow by providing 2 key
outputs: summaries of past similar projects based on the
input text queries related to specific QIPs and historical
hospital performance metrics. The integration of dual
functionality = streamlines the wuser workflow by
consolidating research tasks within a unified platform,
eliminating the need to navigate between different tools
and promotes a more cohesive research experience.

Leveraging on a vector database indexed with embeddings
of past QIP documents, the Poster RAG agent summarizes
a list of similar internal projects to inform and
contextualize tried and tested improvement efforts; while
the Text-to-SQL agent provides data-driven support with
the retrieval and summarization of historical hospital
performance metrics relevant to the user’s query extracted
from the hospital’s database.

While the two specialized agents are designed to perform
individual workflows, the user can also choose to enable a
sequential workflow that enables interaction between the
Poster RAG agent and the Text-to-SQL agent. Leveraging
the wealth of data contained within historical QIP
documents, this connected workflow enables users to
perform follow-up research by posing nuanced questions
that connect the information from relevant posters with
specific hospital data insights. Our solution is designed to
facilitate generation of insightful connections between
ideas and data findings, prioritizing transformation of
abstract concepts into concrete, data-driven insights.

Considering our emphasis on leveraging internal reference
materials together with the current workflow to integrate
new QIP ideas with existing hospital data, the originally
proposed web search agent — intended for the retrieval of

LLM-Powered Multi-Agent Framework for Quality Improvement in Healthcare

external information has been determined to fall outside the
boundaries of the current project scope. The existing
solution infrastructure is deemed sufficient for our target
audience.

2. Dataset Description

2.1 SQL Tables

The hospital database utilized in this project consists
entirely of synthesized data generated through SQL scripts
based on mathematical distributions. All data was
randomly and artificially created; no real patient
information is used at any stage of this project. This
synthetic dataset serves as the foundation for the Text-to-
SQL component, demonstrating how natural language
queries can be translated into SQL and executed against a
structured database.

A total of 5 table schemas have been curated for the SQL
database: inpatient cases, outpatient cases,
patient incidents,patient wait times,and
surgery metrics. These schemas capture critical data
related to patient experiences and operational efficiency
within a hospital system, focusing on the details for each
patient encounters, adverse events, waiting times, and
surgical procedures.

patient_id (PK) patient_id (PK, FK)
hospital_id hospital_id

department
primary_doctor_id

appointment_time
registration_time

surgery_id (PK) —,— patient_id (PK) patient_id (PK, FK)
patient_id (FK) hospital_id ‘age
procedure_type department gender

| surgeon | primary_doctor_id |incident_type

Figure 2.1.1. Sample Entity-Relationship (ER) Diagram of
table schemas available in a hospital SQL database.

The inpatient cases and outpatient cases
detail the specifics of each patient’s admissions or visits.
Both tables track essential medical diagnosis, treatment
plans, attending physician details, and billing information
with the notable difference of inpatient cases

recording hospital admission details while
outpatient cases records the visit date.
The patient incidents table is specifically

designed to record and track adverse events involving
patients, capturing the type of incident, the date-time of
occurrence, and information regarding the affected
patients. This allows for the analysis of incidents in relation
to inpatient stays, potentially identifying patterns or factors
associated with specific patient populations or conditions
relevant to quality improvement.

The patient wait times table provides a detailed
breakdown of the time spent by outpatients at various
stages of their visit — appointment, registration, triage,

consultation, to billing and pharmacy. The captured
timestamps at each key step along with the total time spent
enables a granular analysis of patient flow and bottlenecks
in the outpatient process.

Finally, the surgery metrics table focuses on
capturing a comprehensive set of data related to surgical
procedures. Beyond surgery procedure information, it also
includes critical surgery metrics such as blood loss, patient
complications, and readmission rates.

An SQLite database file (bt 5153 gp . db) was populated
with generated data based on the defined schema
structures. This database serves as a centralized repository
that closely represents a hospital database, for data retrieval
and analysis purposes to be used for the Text-to-SQL
agent.

2.2 Medical Posters

The medical QI posters used in this project are publicly
available from the Singapore Healthcare Management
Congress: Singapore Healthcare Management Congress -
Poster Exhibition (Singapore Health Services, n.d.).

31 medical posters from 2021 to 2024 across various
hospitals have been systematically extracted and prepared
for in-depth analysis in PDF format. These posters possess
key attributes such as the originating hospital, thematic
category, medical department, implementation results and
key findings. The rich amount of metadata within each
poster that can be extracted ensures that analysis can be
focused on specific areas of interest, enabling comparative
studies and identification of best practices within the
specific area of interest in quality improvement initiatives
across medical institutions.

Pre-processing of the documents involve a multi-stage
approach to extract the structure and relevant information
prior to the content conversion into vector embeddings.
Recognizing that the posters are present in a variation of
format, this poses a limitation to pre-process all posters
with a standardized. As such, distinct methodologies are
developed for more robust content extraction to
accommodate the structural variations of the posters
ensuring comprehensive and accurate chunking of
information.

Following the pre-processing stage that identifies
information segmented into crucial portions, the resulting
metadata and structured textual content undergoes an
embedding process and stored into a vector database for
retrieval usage by the Poster RAG agent.

3. LLM overview & techniques

3.1 LLM Overview

Large Language Models (LLMs) have emerged as
transformative tools for information processing and

LLM-Powered Multi-Agent Framework for Quality Improvement in Healthcare

decision support across numerous domains. Recent
advances in mid-sized models like Llama 3 (Meta, 2024)
and Mistral (Le Scao et al., 2023) have demonstrated that
models with 7-13B parameters can achieve performance
comparable to much larger counterparts when properly
optimized. These developments have made sophisticated
NLP capabilities more accessible for specialized
applications like healthcare, where computational
efficiency must be balanced with performance
(Thirunavukarasu et al., 2023). LLMs offer particular value
in healthcare quality improvement by automating
information synthesis, standardizing knowledge
extraction, and supporting decision-making—tasks that
traditionally require extensive manual effort by clinicians
with limited data analysis expertise (Singhal et al., 2023).

For the Poster RAG agent, we implement a Retrieval-
Augmented Generation (RAG) architecture that grounds
LLM outputs in domain-specific knowledge, reducing
hallucinations while enhancing factual accuracy in
healthcare contexts (Lewis et al., 2020). RAG systems
have shown particular promise in healthcare applications
where factual correctness is critical (Yang et al., 2025). The
Poster RAG agent employs a dual chunking strategy—
utilizing both full-poster and section-level chunks—to
balance comprehensive context with precise information
retrieval, following established practices in RAG system
design (Gao et al., 2023).

For the Text-to-SQL agent, our implementation focuses on
effective query generation with built-in error handling
mechanisms. The agent first analyzes user input for
relevance to the database schema, then generates SQL
queries appropriate to the detected information needs.
Recent studies highlight the importance of schema
awareness in text-to-SQL systems (Liu et al., 2023), which
we incorporate through explicit database structure analysis.
A recursive refinement process improves query accuracy
by providing error messages back to the query generation
component for up to three retry attempts (Zeng et al.,
2022). This approach significantly enhances the robustness
of database interactions without requiring users to possess
SQL expertise, addressing known challenges in text-to-
SQL parsing robustness.

Agentic Al refers to advanced artificial intelligence
systems where autonomous agents-often powered by large
language models-can independently interpret context,
make decisions, plan and execute multi-step actions, and
adapt their behavior based on feedback and changing
objectives, all with minimal human oversight. (IBM, 2025;
Domo, 2025). Unlike traditional rule-based or generative
Al, agentic Al systems are goal-oriented, capable of
decomposing complex queries, iteratively refining their
outputs, and integrating data from multiple sources or tools
to achieve specific outcomes. This adaptability and
autonomy allow agentic Al to handle ambiguous, multi-
faceted, or evolving tasks, making it ideal for domains like
healthcare, where evidence synthesis and dynamic
problem-solving are crucial (Weights & Biases, 2025).

To operationalize agentic Al in our project, we adopt
LangGraph — a specialized framework designed to build
stateful, graph-based, multi-agent workflows for LLMs. In
LangGraph, each agent or function is represented as a node
within a directed graph, enabling flexible, non-linear
execution with persistent memory and dynamic decision-
making across the workflow. This architecture supports
modularity, robust error handling, and human-in-the-loop
interventions where needed. By leveraging LangGraph’s
capabilities, our system orchestrates specialized agents to
deliver a highly adaptive, transparent, and resilient
research support tool for healthcare quality improvement
initiatives. The next section details the design and
development of these agents within our platform.

3.2 LLM Application- Technical Stack

This project adopts a fully local, privacy-preserving
architecture tailored for healthcare environments where
data confidentiality is critical. The system integrates
several core components. Weaviate, deployed via Docker,
serves as the local vector database for storing and
retrieving medical poster embeddings, utilizing the
text2vec-ollama and generative-ollama modules.
LangGraph is employed to build stateful, multi-agent
workflows that coordinate the Retrieval-Augmented
Generation (RAG) and Text-to-SQL agents. All language
models are hosted locally through Ollama, enabling the use
of models such as Llama 3 and Qwen2.5 (7B, 14B, and 32B
variants) without making external API calls. This
guarantees that no sensitive data leaves the local
environment.

The user interface is powered by Streamlit, providing an
intuitive, browser-based conversational interface that
consolidates both poster retrieval and hospital data
querying workflows. Hospital operational data is stored in
a local SQLite database containing entirely synthetic
information to simulate realistic query tasks without
exposing real patient data. This fully localized design
ensures end-to-end control, security, and compliance with
strict healthcare data privacy requirements.

4. Agent Design & Development

4.1 Poster Search Agent

The Poster Search Agent is designed to provide users with
relevant information retrieved from the database of Quality
Improvement Posters (QIPs), leveraging a structured
Langgraph workflow for efficient and accurate retrieval.

Traditional linear RAG workflows, which perform passive
single-shot retrieval based on the user’s query, are
insufficient for healthcare QIP contexts characterized by
ambiguous, multi-faceted, and under-specified questions.
Our agentic RAG architecture instead introduces dynamic
decision points: initial relevance validation, metadata-
driven pre-filtering, retrieval quality grading, and iterative

LLM-Powered Multi-Agent Framework for Quality Improvement in Healthcare

query rewriting, enabling active correction and contextual
refinement during retrieval. This agentic design sharply
improves retrieval precision, semantic alignment, and
robustness against query failure modes — critical in clinical
research environments where irrelevant outputs erode user
trust, waste clinician time, and undermine project
outcomes. Although agentic flows increase system
complexity and marginally impact latency, the ability to
reason, adapt, and self-correct is essential for sustaining
user confidence and delivering reliable support to QIP
initiatives.

To optimize retrieval performance in our RAG system, we
implemented a dual chunking strategy that balances
semantic coherence with retrieval granularity. Recognizing
variability in posters layouts (Appendix A2), two chunking
methods were applied:

1) Full-poster-level chunking: Preserve complete
project narratives, supporting complex cross-
sectional queries, and at the

2) Section-level chunking: Enhance precision for fine-
grained information needs (e.g., Introduction,
Methods, Results). Layout parsing models (e.g. PDF
layout models) and semantic segmentation
techniques were employed to accurately detect
section boundaries for section-level chunking,
ensuring that critical information remains intact and
contextually coherent for accurate and complete
information retrieval.

To align retrieval with user intent, we implemented a two-
tier RAG workflow: initial queries retrieve from section-
based chunks for targeted relevance, and from the relevant
projects identified, a secondary retrieval pulls the full
posters to provide holistic context for deeper exploration.
This dynamic adjustment of retrieval granularity mirrors
natural clinical reasoning patterns—moving from focused
evidence to broader case understanding—and enhances
both semantic alignment and user trust. Although it
introduces additional system complexity, this architecture
significantly improves retrieval resilience, precision, and
the overall quality of interaction in high-stakes, healthcare-
focused RAG environments.

The process begins with the user posing a question, where
the initial relevance check node determines if the user's
query aligns with the established scope and relevance to a
medical theme and focus on quality improvement
initiatives. This ensures that relevant information can be
retrieved within the system, else the user will be prompted
to clarify their question.

Upon confirming query relevance, the agent proceeds to
the retrieve poster node, where metadata filtering is
applied to identify relevant attributes within the vectorized
document database. This metadata-driven approach
enhances retrieval precision by prioritizing documents that
more directly address the user's intent. At this stage, a loose
semantic similarity threshold (e.g., 0.5) is applied, with
final relevance scoring and filtering delegated to the LLM

for deeper semantic evaluation beyond surface-level
similarity.

After the retrieval, all relevant chunks are collectively
evaluated by a secondary LLM to assess their combined
relevance to the user’s query. This holistic evaluation
considers the collective informational strength of the
retrieved set. By analyzing how the chunks interact and
complement each other, the system ensures that the final
response is not only individually relevant but contextually
coherent and fully aligned with the user’s intent. This
collective assessment significantly enhances the fidelity
and completeness of the output, especially for complex
clinical queries requiring multi-source synthesis.

Subsequently, a structured response is returned to the user,
comprising the titles of the top-ranked posters, concise
summaries, and direct links to the original documents for
easy access. This design promotes traceability, enables
independent verification of the summarized content, and
reinforces user confidence in the system's transparency and
reliability.

Shall the user's initial query not result in relevant content
within the existing QIP knowledge base, the agent initiates
a rewriting process, up to a maximum of 4 tries.

To enhance the efficiency of poster filtering, users are also
provided with active controls to refine their search upfront
by the year and hospital. This feature enables quicker
access to relevant posters based on predefined contextual
parameters with a narrower search window. (Appendix A3)

4.2 Data Search Agent

The Data Search Agent is designed to process user-
provided text prompts and return summarized results from
SQL queries for the user. The underlying process, detailed
in the LangGraph (Appendix A4) outlines the agent's
architecture and operational steps for user interaction. An
agentic approach was found to provide better results in
terms of generated answers and fewer errors, as the agent
can analyse user inputs in details and evaluate if it needs to
clarify with the user further when there is not sufficient
information to perform the query. Also, it can learn from
any failed query executions to improve its subsequent SQL
query generation.

The flow begins when the user provides input being passed
through the sequence of nodes in the agent:

1. The format question node performs a two-step
process in which it extracts key information from the
user input question, then evaluates if the key points
are relevant to the SQL database:

a. Firstly, the wuser input is analysed and
contextualised to the SQL database schema, to
extract the key answers that the user is looking
for in the data.

b. Secondly, these key points are evaluated against
the database schema and sample data from the

LLM-Powered Multi-Agent Framework for Quality Improvement in Healthcare

tables to determine if the SQL database contains
the relevant information to answer the user. This
step is crucial to cover the cases whereby the
information the user is searching for may be
within a column value and cannot be found in
the column header.

2. The write query node attempts to generate a SQL
query based on the analysed user input from the
previous node and the SQL database schema
information. The LLM is prompted with good
practices such as SQL syntax, especially multi-table
query related ones such as JOIN and UNION which
it struggles with more, along with reminder to follow
SQLite database specific syntax, to help it generate
SQL codes more accurately. The resulting SQL query
is subsequently cleaned and pre-processed to ensure
compatibility with existing SQL server.

3. Theexecute query node attempts to run the generated
SQL query against the database. Shall the query
executes successfully, the results are passed to the
generate _answer node; else if the query fails, the error
message is passed back to the previous write query
node for it to retry its SQL query generation with the
error message providing additional context. A max
limit of 3 retries is set to avoid infinite loops of retries,
when it occurs, the error message will be passed
forward instead, indicating SQL code generation is
not possible.

4. Finally, generate answer node compiles the user's
original question, the SQL query, and the returned
results to generate a natural language answer.
Additionally, the prompt is also used to guide the
generated answer to provide more explainability to
the generated answer by including information on the
data sources and thought process of the LLM.

5. Meanwhile, if the agent determines that the user’s
question could not be answered with the database at
the format question node, the flow is routed to the
clarify_with_user node where the user is prompted
for clarification.

6. The final answer at the end of the loop is formatted
for the user in the format_response node before being
presented.

4.3 Dual Agent Orchestration

Within the main Streamlit UI, 2 app modes are available
for selection that calls the agents for poster retrieval and
data generation. The user can seamlessly transition
between the modes vis an intuitive toggle mechanism,
optimizing their workflow to suit their specific research
tasks.

One key feature of our solution is the seamless integration
between poster-based retrieval and structured SQL data
exploration. After answering a user’s query by retrieving
relevant medical QIP posters, the system intelligently
suggests three follow-up data questions tailored to the
user's original intent (Figure 4.3.1). These database
insights guide clinicians to dive deeper into structured
databases, allowing them to validate findings, compare
interventions, or quantify outcomes. This tight coupling
between unstructured poster insights and structured data
analytics accelerates clinical decision-making, reduces
manual effort, and promotes a more rigorous, data-driven
approach to quality improvement research.

Il Database
Insights

Database queries you can run:

Q1: How many falls have Q2: What is the total number Q3: How many surgeries

occurred in each of inpatient cases for each

hospital in 20227

were performed in each

department? department in 20227

Il Run this query 1l Run this query 1l Run this query

Figure 4.3.1. Suggested questions generated by the LLM
for the user as to follow-up after the Poster Search Agent.

5. Model Evaluation and Discussion

The Qwen large language model has been chosen as the
foundational model due to its consistent top performance
among open-source models and its built-in support for tool
calling functionality. To determine the optimal model
configuration, a comparative analysis was conducted
across several Qwen variants, specifically evaluating the
impact of different parameter sizes from the 7B, 14B, and
32B parameter models.

Qwen2.5’s selection as our foundational model is further
validated by its top-tier performance on the Hugging Face
Open LLM Leaderboard. Specifically, Qwen2.5-7B, 14B,
and 32B variants consistently rank as the best-performing
open-source models within their respective parameter
classes, outperforming peers across key benchmarks such
as MMLU, BBH, and GSM8K. This external validation
underscores Qwen2.5's robustness and suitability for our
healthcare quality improvement tasks, ensuring that our
comparative analysis is grounded in models that are not
only theoretically sound but also empirically superior.

By deploying a uniform underlying Qwen model
throughout all iteration controls, we ensure that the
experiment setup guarantees any observed performance
differences are attributed to the model size and not
confounded by the inherent differences across the base
language model itself. This approach enhances the validity
of our comparative analysis, enabling us to draw more
accurate and reliable conclusions regarding the
effectiveness of the development techniques in conjunction
with the models deployed of varying parameter scales.

LLM-Powered Multi-Agent Framework for Quality Improvement in Healthcare

5.1 LangSmith Evaluation

LangSmith is a unified observability & evaluation tool for
LLMs. Our group selected LangSmith for this project as it
is considered an industry-standard tool for LLM
monitoring and provides integration with LangChain.
Using LangSmith, we were able to trace the performance
of different LLMs used throughout the development
process and evaluate the trade-offs between latency and
token usage. In general, higher token consumption
correlates with increased model latency. While using larger
models with extended context windows can enhance the
quality of responses, it also typically results in longer
runtimes.

Latency vs Total Tokens

* 05_qwen2.5-32b-ctx6000

04_qwen2.5-32b-ctx4096
* 03_qwen2.5-14b-ctx4096
80 * 02_qwen2.5-Tb-ctx4096
s 0lllama3.1-8b

Latency (s}

o 10000 20000 30000 40000
Total Tokens (per node for each run}

Figure 5.1.1. Figure of latency vs. total tokens used.

An exception to this trend was observed with the
gwen2.5-32b-ctx6000 model, which specifically
process cases requiring longer input contexts. As a result,
its total token usage typically remained within the 15,000-
token range. This more specialized use case naturally
limited the variation in output length compared to more
general-purpose models, which may have to handle a wider
range of inputs and therefore sometimes generate
significantly longer responses.

Length of LangGraph runs by Agent Latency of LangGraph runs by Agent Total Tokens usage by Agent

Mo, of LangGraph Nodes

« 20000

5 b OB ¥
Latency (s

10000

] ol " ol
agentic_rag sal_query_agent o agent wertes sl qoery_sges
ent aqen

Figure 5.1.2. Figure of Length of LangGraph runs by
Agent.

Although most agent runs completed within 20 seconds
and consumed fewer than 10,000 tokens, violin plots of
graph length, latency, and token usage revealed the
presence of outliers. These outlier runs consumed
substantially more resources than intended, resulting in
longer runtimes and increased computational costs.

Latency of LangGraph runs by Nodes

Ejéﬁéélﬁﬁ

Figure 5.1.3. Latency of LangGraph runs by nodes for
Poster Search Agent.

atency of LangGragh runs iy Nodes

i
f = i!ﬁ

Figure 5.1.4. Latency of LangGraph runs by nodes for Data
Search Agent.

A detailed analysis at the node level indicated that the
majority of these issues were caused by:

e custom retriever node (RAG agent): This node
retrieves relevant poster documents from the database.
The number of documents retrieved can vary
depending on input relevance. In certain cases, highly
relevant inputs triggered the retrieval of a large
number of documents, significantly increasing token
consumption.

e format question node (SQL query agent): This
node extracts key questions from user input and
checks for relevance against the database schema.
Since the schema itself can consume over 3,000
tokens, additional tokens are also required for the
LLM to reason through and formulate the final
question, resulting in higher token usage.

e write query node (SQL query agent): This node
generates SQL queries using the database schema as
part of its prompt. Furthermore, it incorporates any
error messages from previous query execution
attempts into its input, aiming to refine subsequent
queries. However, this error-handling mechanism also
increases the overall token consumption.

By identifying these bottlenecks, we are better able to
understand resource usage patterns and can explore more
safeguards in future iterations to control costs and improve
performance.

5.2 Evaluation of Agentic Poster RAG

The Poster RAG system adopts an agentic retrieval-
augmented generation (RAG) architecture to address the
complexity inherent in medical quality improvement (QIP)
queries. Traditional linear RAG systems follow a reactive,
single-shot retrieval process based solely on the user’s
query, which is effective for straightforward information
needs but limited in handling multi-faceted,
underspecified, or evolving queries typical in QIP contexts.
In contrast, the agentic RAG design enables dynamic
decision-making: the system can reason about query

LLM-Powered Multi-Agent Framework for Quality Improvement in Healthcare

relevance before retrieval, decompose complex questions
into sub-tasks, iteratively refine search queries, and
validate the quality of retrieved documents (Fluid.ai,
2024). Leveraging the LangGraph framework, the Poster
RAG agent performs step-by-step planning, proactively
screens for query relevance, and grades retrieved contexts
for alignment, ensuring a higher baseline quality of
information feeding into the final answer.

Rigorous evaluation of system performance was conducted
using the RAGAS framework, assessing five key
dimensions: context precision, context recall, faithfulness,
response relevancy, and response similarity.

To rigorously evaluate our Poster Search Agent under the
RAGas framework, we curated a test set comprising 28
queries spanning a gradient of difficulty levels.
Queries were stratified into three tiers — Level 1 (easiest,
targeted single-hop), Level 2 (moderate), and Level 3
(difficult, broad/multi-hop) — based on anticipated
retrieval and reasoning complexity (Appendix AS). In
addition to standard queries, we included four edge-case
queries specifically designed to test the system’s resilience
against ambiguous, multi-hop, or low-context prompts.
This deliberate design ensured a comprehensive evaluation
across common, challenging, and adversarial user
scenarios, offering a more realistic assessment of system
robustness and generalization performance.

Table 5.2.1. RAGAS evaluation metrics across queries of
different levels of difficulties.

Query Context Context Faithful Response Res Avg
difficulty _precision _recall -ness _relevancy _similarity _score
1 0.733 0.850 0.661 0.770 0.781 0.759
(easy)
2 0.690 0.846 0.577 0.752 0.666 0.706
3 0.717 0.831 0.513 0.601 0.524 0.637
(difficult)
Average 0.713 0.842 0.584 0.708 0.657 0.701

The table summarizes RAGAS evaluation metrics across
queries of varying difficulties. As expected, Level 1
queries achieved the highest overall scores across all
metrics, with strong context precision (0.733) and response
relevancy (0.770). Performance slightly declined for Level
2 queries, reflecting greater semantic complexity. Level 3
queries, representing the most difficult prompts, showed
marked drops in faithfulness (0.513) and response
similarity (0.524), highlighting challenges in grounding
answers under limited or fragmented evidence conditions.
Nevertheless, the system maintained a respectable average
score of 0.701 across all queries, demonstrating robust
retrieval, strong contextual reasoning, and resilience even
under adversarial conditions.

Table 5.2.2. RAGAS evaluation metrics comparison
between Qwen2.5 7B vs 14B vs 32B.

Qwen2.5B Context Context Faithful

_paramsize _precision _recall -ness
32B 0.706 0.844 0.580 0.713 0.658 0.700
14B 0.666 0.776 0.603 0.645 0.557 0.649

Response Response Average
_relevancy _similarity score

7B 0.615 0.698 0.485 0.619 0.610 0.605

Results demonstrate strong retrieval capabilities,
particularly at larger model scales. Using Qwen2.5-32B,
the system achieved a context precision of 0.705 and a
context recall of 0.844, confirming its ability to recover
most of the critical information from past QIP projects. In
the medical QIP domain, where comprehensive situational
awareness across interventions, methodologies, and
outcomes is vital for project design, high recall is
especially critical to avoid redundant efforts and missed
learning opportunities.

Model scaling effects were clearly observed: Qwen2.5-
32B consistently outperformed 14B and 7B variants across
all RAGAS metrics, highlighting the advantages of greater
model capacity for semantically rich domains like QIP.
However, faithfulness — the strict grounding of generated
responses in retrieved evidence — remains a notable
challenge, with the 32B model achieving a score of 0.524.

The suboptimal faithfulness score highlights the 32B
model’s limitations in consistently grounding complex
clinical answers to retrieved evidence. However, the
significant performance gains observed between the 7B
and 32B models suggest that scaling to larger models could
further enhance grounding reliability.

Recognizing the clinical importance of answer fidelity, our
solution mitigates this risk by providing direct links to the
original project posters, allowing users to independently
verify summarized information and reinforcing
transparency.

Addressing this challenge fully beyond raw model size will
require architectural innovations such as dynamic context
pruning, retrieval-aware generation scaffolding, and
answer faithfulness verification mechanisms.

Overall, the agentic Poster RAG system demonstrates a
robust foundation for supporting medical QIP research
workflows. High retrieval recall enables comprehensive
evidence synthesis, while thoughtful agentic design
mitigates many common failure modes of traditional RAG.
Strategic future enhancements aimed at tightening answer
grounding and expanding multimodal extraction
capabilities will further optimize the system’s fidelity,
completeness, and clinical utility.

5.3 Evaluation of Data Search Agent

To evaluate the effectiveness of the Text-to-SQL agent, we
adopt a robust evaluation framework grounded in the
SPIDER benchmark methodology. A set of 10 diverse
natural language questions was manually curated by our
team, with corresponding gold-standard SQL queries
constructed and validated using SQLite to ensure the
correctness of ground truth answers.

Each question was then automatically categorized into one
of four difficulty levels—easy, medium, hard, or extra
hard—based on the SPIDER-defined complexity of the

LLM-Powered Multi-Agent Framework for Quality Improvement in Healthcare

gold SQL components. This stratified setup ensures a
comprehensive assessment of the model’s ability to
generate queries across a range of complexities.

The predicted SQL queries are evaluated using two
primary metrics: exact match and component-level
(partial) match.

The exact match requires the predicted query to be
structurally identical to the gold-standard, resolving issues
such as clause ordering. In contrast, Partial match
decomposes the SQL into clause-level components (e.g.,
SELECT, WHERE, GROUP BY, JOIN), treated as bags of
several sub-components, and measures overlap between
the predicted and gold components. This allows
recognition of partial correctness even when full exactness
is not achieved.

Given the complexity of real-world SQL constructs,
including nested queries, aliasing, and aggregation
functions (e.g., ROUND, CAST, CASE WHEN, IS
NULL), we observed several parsing failures using
SPIDER's original evaluation script. To address these
issues, we introduced targeted modifications to the
SPIDER process sql.py parser to improve resilience
against:

1. Invalid alias detection during parsing 2. Functions not
originally ~ supported (e.g., ROUND, CAST,
TIMESTAMPDIFF) 3. Ambiguous JOIN patterns and long
subqueries 4. Improper tokenization of NULL-related
conditions

These enhancements enabled more accurate parsing of
complex SQL expressions, which are common in user-
generated prompts for enterprise use cases.

While these parser adjustments improve practical
coverage, they may slightly deviate from the strict original
evaluation semantics of SPIDER. However, they also
mitigate known limitations, such as the penalization of
logically equivalent queries that differ only in alias naming
or clause ordering—issues previously raised in recent work
(Richard et al., 2024).

In conclusion, our modified evaluation pipeline, informed
by SPIDER's methodology and refined for real-world SQL
structures, provides a more faithful reflection of the
model's strengths and weaknesses in text-to-SQL
generation.

Table 5.3.1. Text to SQL evaluation metrics comparison
between Qwen2.5 7B vs 14B vs 32B.

QUESTION/ o ation QWEN-7B QWEN-14B QWEN-32B

DIFFICULTY
Exact TRUE TRUE TRUE
MATCH

1-EASY
EXECUTION TRUE TRUE TRUE
VALUE

2-EASY Exact TRUE TRUE TRUE
MATCH

EXECUTION

TRUE TRUE TRUE
VALUE
ExAcT
TRUE FALSE TRUE
MATCH
3-MEDIUM
EXECUTION
TRUE TRUE TRUE
VALUE
ExAcT FALSE FALSE TRUE
MATCH
4-EASy
EXECUTION FALSE TRUE TRUE
VALUE
Exact FALSE FALSE FALSE
MATCH
5-EXTRA
EXECUTION TRUE TRUE TRUE
VALUE
EXACT
FALSE TRUE FALSE
MATCH
6-HARD
EXECUTION
FALSE TRUE FALSE
VALUE
EXACT
FALSE FALSE FALSE
MATCH
7-EXTRA
EXECUTION
FALSE FALSE FALSE
VALUE
ExAcT
FALSE FALSE FALSE
MATCH
8-EXTRA
EXECUTION
FALSE FALSE FALSE
VALUE
ExAcT
FALSE FALSE FALSE
MATCH
9-EXTRA
EXECUTION
FALSE FALSE FALSE
VALUE
ExAcT
FALSE FALSE FALSE
MATCH
10-EXTRA
EXECUTION
FALSE FALSE FALSE
VALUE

Table 5.3.2. Text to SQL evaluation metrics comparison
between Qwen2.5 7B vs 14B vs 32B.

easy medium hard extra all
count 3 1 1

===s====se=mszmmmcmem= EXACT MATCHING ACCURACY ss==sss===smmmms—e=
exact match 1,006 1.060

e ———PARTIAL MATCHING ACCURACY—m-—mm e
select 1.000 1.800

select(no AGG) 1.000 1.000 0_ae0 9.200 ®.508
where 1.000 .90 ©.800 0,500 ©.508

whereino OP) 1,060 0,000 0,009 8,500 0,500
group(no Having) .00 1.808 0.808 8,667 0,758

As part of the evaluation, we compared model performance
using Qwen-7B, Qwen-14B, and Qwen-32B on a custom
SPIDER-style SQL generation benchmark. Across both
exact match and execution accuracy (exec match) metrics,
Qwen-32B consistently outperformed Qwen-7B and
Qwen-14B. While Qwen-14B achieved execution scores
comparable to Qwen-32B, we observed that it occasionally
produced SQL queries with complex expressions or syntax
(e.g., nested functions, aliases) that the SPIDER evaluation
parser could not process correctly, leading to some parsing
failures during exact match evaluation. Nevertheless, the
underlying execution results remained strong, suggesting
that Qwen-14B generated semantically correct but

LLM-Powered Multi-Agent Framework for Quality Improvement in Healthcare

syntactically non-standard SQL in some cases (Appendix
AO0).

For exact matching and partial matching scores, the results
clearly showed that larger models generally achieved
higher SPIDER scores, reinforcing the idea that model
capacity correlates with SQL generation quality in
structured query tasks.

Overall, the evaluation confirmed that SPIDER-style exact
match and partial match scores are effective indicators of a
model’s ability to generate correct SQL text, even when
combined with execution-based evaluation for robustness.

6. Limitation

6.1 Poster Search Agent Limitations

1. While maximizing retrieval recall by including
broader relevant chunks enriches answer
completeness, it introduces minor faithfulness risks,
as larger context windows increase cognitive load on
the language model and elevate the potential for
semantic drift. In the medical QIP domain, where
project fidelity and evidence-based reporting are
critical, even minor hallucinations can mislead
subsequent improvement efforts. To mitigate this,
future work will explore dynamic context pruning
strategies, selectively narrowing context inputs based
on relevance scoring and query intent, thereby
balancing the trade-off between coverage and
groundedness.

2. Current text-only extraction pipelines omit a
significant portion of critical information embedded
within tables, flow diagrams, and outcome charts,
which are pervasive in medical QIP posters. This
blind spot results in incomplete contextual
understanding and retrieval gaps, particularly for
metrics-driven projects. Future system iterations will
integrate multimodal extraction pipelines, combining
OCR, structured table parsing, and diagram
captioning, enabling comprehensive semantic
indexing of both textual and visual elements to
significantly enhance retrieval quality and answer
fidelity.

3. As the volume and semantic richness of QIP posters
expand, the risk of embedding collapse in low-
dimensional vector spaces intensifies, leading to
semantic blurring and degraded retrieval precision.
Without adequate retrieval sophistication, fine-
grained project nuances critical to QIP outcomes may
be lost. To address this, future development will
implement higher-dimensional embeddings, multi-
vector retrieval architectures such as CoOLBERT, and
hierarchical retrieval frameworks that preserve
semantic separability while maintaining scalable,
efficient retrieval over expanding corpus.

6.2 SQL Query Agent Limitations

1. Scalability Challenges with Increasing Database Size
—the SQL agent relies heavily on the database schema
to provide essential context when generating queries.
As the size of the SQL database increases, the schema
naturally becomes more complex, with complicated
relationships between tables. Currently, Qwen2.5-
32B is used to handle a SQL database consisting of
only five tables, and even so, it requires at least 3,000
tokens — a relatively large context size for a non-
commercial solution. As database complexity scales
up, more powerful LLM will be necessary to process
the expanded context effectively and accurately
interpret the increasingly complicated relationships
and structures.

2. Limitations in Handling Execution Errors and Retry
Mechanisms — another limitation lies in how the agent
manages execution errors resulting from incorrect
SQL code generation. To prevent infinite, retry loops
(where the agent repeatedly attempts to regenerate
SQL queries without resolving the underlying error)
the current solution imposes a maximum limit of
three retries before passing the error to the user. While
this safeguard is necessary with the current
capabilities, a more advanced LLM could generate
correct SQL queries on the first attempt, significantly
reducing the need for retry limits and error-handling
mechanisms.

7. Conclusion

This project advances healthcare quality improvement by
demonstrating how LLM-powered, agentic systems can
close critical data-literacy gaps among clinicians. Through
the orchestration of Poster RAG and Text-to-SQL agents
with LangGraph, we built a modular, resilient workflow
that enables context-grounded evidence synthesis and
structured data exploration. Rigorous evaluation confirms
strong retrieval, reasoning, and robustness, while
highlighting pathways for future innovation in multimodal
retrieval, faithfulness optimization, and scalable
deployment. Our work establishes a strong foundation for
agentic Al as a catalyst for more rigorous, efficient, and
data-driven clinical improvement efforts.

LLM-Powered Multi-Agent Framework for Quality Improvement in Healthcare

References

AWS. (2025, March 6). Build a Multi-Agent System with
LangGraph and Mistral on AWS.

Celi LA et al. Bridging the Health Data Divide. J] Med
Internet Res. 2016;18(12):e325. doi: 10.2196/jmir.6400.

Chase, H. (2023, December 14). LangGraph: Multi-agent
workflows for LLMs. LangChain Blog.
https://blog.langchain.dev/langgraph/

Dev.to. (2025, February 10). LangGraph Uncovered:
Building Stateful Multi-Agent Applications with LLMs.

Domo. (2025, February 26). Agentic Al Explained:
Definition, Benefits, and Use Cases.

Fluid.ai. (2024, December 18). Agentic RAG vs.
Traditional RAG: The Future of Al Decision-Making.
Retrieved from https://www.fluid.ai/blog/agentic-rag-vs-
traditional-rag-the-future-of-ai-decision-making

Gan, Y., Chen, X., Xie, J., Purver, M., Woodward, J. R.,
Drake, J., & Zhang, Q. (2021). Towards robustness of
text-to-SQL models against synonym substitution. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics (pp. 2505-
2515). Association for Computational Linguistics.
https://doi.org/10.18653/v1/2021.acl-long.195

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai,
Y., Sun, J., Wang, M., & Wang, H. (2023). Retrieval-
augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997.
https://doi.org/10.48550/arXiv.2312.10997

Han FK (2024, February 14) Commentary: What to do
about rising medical costs in Singapore. Channel News
Asia.https://www.channelnewsasia.com/commentary/si
ngapore-healthcare-medical-costs-rising-expensive-
solution-insurance-coverage-4119801

IBM. (2025, February 14). What is LangGraph?
IBM. (2025, February 24). What Is Agentic AI?

Ivers NM et al. Growing literature, stagnant science? J Gen
Intern Med. 2014;29(11):1534-41. doi: 10.1007/s11606-
014-2913-y.

LangChain. (2024). LangGraph: Building stateful multi-
agent workflows. LangChain. Retrieved April 27, 2025,
from https://langchain-ai.github.io/langgraph/

Larson DB et al. Recognizing and Avoiding Common
Mistakes in Quality Improvement.] Am Coll Radiol.
2021;18(3 Pt B):511-513. doi:
10.1016/j.jacr.2020.09.053.

Le Scao, T., Tunstall, L., Poesia, G., Silva, A. D., Roziére,
B., Chowdhery, A., Geiger, A., Lavril, T., Zhou, C,
Lebret, R., Vetterli, M., Wolf, T., Bhagia, A., Santilli, A,
von Werra, L., & Luccioni, A. S. (2023). Mistral 7B.

10

arXiv preprint arXiv:2310.06825.

https://arxiv.org/abs/2310.06825

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Kiittler, H., Lewis, M., Yih, W. T.,
Rocktdschel, T., Riedel, S., & Kiela, D. (2020).
Retrieval-augmented generation for knowledge-intensive
NLP tasks. Advances in Neural Information Processing
Systems, 33, 9459-9474.
https://proceedings.neurips.cc/paper/2020/hash/6b49323
0205f780e1bc26945df7481e5-Abstract.html

Liu, Q., Guo, B., Chen, Z., Zhu, J., & Tang, J. (2023). A
survey of text-to-SQL parsing. arXiv preprint
arXiv:2208.13629. https://arxiv.org/abs/2208.13629

Meta. (2024, April 18). Introducing Llama 3: The most
capable openly available Al model.
https://ai.meta.com/blog/meta-llama-3/

Milvus. (n.d.). Stop using outdated RAG: DeepSearcher &
Agentic RAG approaches—changes everything. Milvus.
https://milvus.io/blog/stop-use-outdated-rag-
deepsearcher-agentic-rag-approaches-changes-
everything.md

Richard R, Gowtham K, Ashutosh T. Spider: A Large-
Scale Human-Labeled Dataset for Complex and Cross-
Domain Semantic Parsing and Text-to-SQL Task.
2424Duda, R. O., Hart, P. E., and Stork, D. G. Pattern
Classification. John Wiley and Sons, 2nd edition, 2000.

Singapore Health Services. (n.d.). Poster exhibition.
Singapore Healthcare Management Congress. Retrieved
April 27, 2025, from
https://www.singaporehealthcaremanagement.sg/Pages/
Poster-Exhibition-2022.aspx

Singhal, K., Azizi, S., Tu, T., Mahdavi, S. S., Wei, J.,
Chung, H. W., Scales, N., Tanwani, A., Cole-Lewis, H.,
Pfohl, S., Payne, P., Seneviratne, M., Gamble, P., Kelly,
C., Scharli, N., Ridgeway, K., Chen, 1., Uminski, M.,
Pfister, H., ... Nori, H. (2023). Large language models
encode clinical knowledge. Nature, 620(7972), 172-180.
https://doi.org/10.1038/541586-023-06291-2

Tao Y et al. Spider: A Large-Scale Human-Labeled
Dataset for Complex and Cross-Domain Semantic
Parsing and Text-to-SQL Task. 2018.

Thirunavukarasu, A. J., Ting, D. S. J., Elangovan, K.,
Gutierrez, L., & Tan, T. (2023). Large language models
in medicine. Nature Medicine, 29(8), 1930-1940.
https://doi.org/10.1038/s41591-023-02448-8

Weights & Biases. (2025, March 10). Agentic RAG:
Enhancing retrieval-augmented generation with Al
agents.

https://www.fluid.ai/blog/agentic-rag-vs-traditional-rag-the-future-of-ai-decision-making
https://www.fluid.ai/blog/agentic-rag-vs-traditional-rag-the-future-of-ai-decision-making
https://langchain-ai.github.io/langgraph/
https://ai.meta.com/blog/meta-llama-3/
https://doi.org/10.1038/s41591-023-02448-8

LLM-Powered Multi-Agent Framework for Quality Improvement in Healthcare

Appendix

Al. Source code on GitHub
https://github.com/BZ269/5153-2025-final-proj-gp2
A2. Sample QIP Posters

Paflent Acceptabllity & satisfaction
with Pilot Supporti ivorship
Care Pragram for

grade_documents

T —
end

A4. LangGraph for Text-to-SQL Agent

__start__

l

format_question

]
write_query
3
—

execute_query

clarify_with_user generate_answer
~ o

format_response

|

_end

AS. Sample Test Queries for RAGas (Poster RAG)

[{ "query": "What specific PDSA interventions were tested
to reduce prescription error rates at Seng Kang

Polyclinic?",

"ground truth": "SHM RMO054 SHP tested three
PDSA cycles: (1) standardizing medication charts
(ineffective), (2) bi-weekly prescription error data and
interviews with high-error prescribers, and (3) pharmacy
technicians flagging fragmented prescriptions to reduce
omissions."},

{"query": "Show me the projects on falls from 2022 by
SKH.",

"ground_truth": "The project SHM_ RMO001 SKH, titled
'Reducing Inpatient Falls Related to Toileting Needs',
conducted at SKH, describes work carried out during
2022. It focused on targeted toileting interventions,
visual reminders, and nursing staff training to reduce falls
specifically related to toileting needs."},

{"query": "Are there QIPs that used environmental or
physical layout interventions (e.g. ward design, signage,
chair placement) to reduce patient risks?",

"ground_truth": "Projects: SHM CO005_ SKH,
SHM RMO022 CGH, SHM RMO055 SHP,
SHM_RMO053 SCH, SHM RM044 SCH — used

signage, bin placement, ward redesigns, and visual
reminders."}]

A6. Sample Test Queries for SQL Evaluation (Data
Search)

[{“query”: “What is the average billing amount from each
hospital's outpatient cases?”,

“ground _truth”:

“SELECT hospital id, AVG(bill amount)
FROM outpatient_cases

GROUP BY hospital id;”},

{“query”: “How many inpatient cases that required
surgery also had follow-ups?”,

“ground_truth”:
“SELECT COUNT(¥*)
FROM inpatient cases
INNER JOIN surgery metrics ON
inpatient _cases.patient id = surgery metrics.patient id
WHERE inpatient_cases.follow_up date IS NOT
NULL;”"},
{“query”: “Which departments have the longest average

surgery durations and also the highest average length of
stay? Are these concentrated in specific hospitals?”,

“ground_truth”:

“SELECT sm.hospital, sm.department,
AVG(sm.duration) AS avg_surgery duration,
AVG(sm.length of stay) AS avg length of stay,
COUNT(sm.surgery id) AS surgery count

LLM-Powered Multi-Agent Framework for Quality Improvement in Healthcare

FROM surgery metrics sm
GROUP BY sm.hospital, sm.department

ORDER BY avg_surgery duration_minutes DESC,
avg length of stay days DESC;”}]

12

	LLM-Powered Multi-Agent Framework for Quality Improvement in Healthcare

