Fake News Detection System

Group 03: Chen Yunjian (A0297854H), Chiu Zheng Qian (A0221547]J), Liu Yibo (A0297810X), Wang Haoyu
(A0296165U), Zhang Shenxin (A0295793H)

GitHub Link: https://github.com/zhengqian89/group03-fake-news-detection

Abstract

Fake news poses a serious threat to society by
spreading misleading or fabricated information at
an alarming rate. In this project, we develop and
evaluate a system for detecting fake news using a
variety of machine learning and deep learning
models. We experiment on a publicly available
news dataset from Kaggle that contains roughly
7,800 labeled articles, equally split between
“REAL” and “FAKE.” The models employed
range from simpler text classification approaches
(Bag-of-Words with Logistic Regression) to
advanced neural architectures (LSTM, BERT)
and a Sentence Transformer. We assess each
model’s performance using accuracy, precision,
recall, and Fl-score. Experimental results
indicate that while traditional methods (e.g., TF-
IDF + Logistic Regression) are strong baselines,
transformer-based embeddings (e.g., Sentence-
BERT + LR) and fine-tuned BERT yield the
highest accuracy, exceeding 96%. We conclude
with a discussion of ethical considerations,
particularly around balancing false positives and
false negatives, and potential strategies for
deploying a reliable fake news detection tool in
real-world contexts.

1. Introduction

1.1 Problem Statement

The proliferation of false or misleading news—commonly
referred to as "fake news"—has emerged as a critical
global societal challenge, particularly highlighted during
events such as the 2016 U.S. presidential election (Lazer
et al., 2018). Research conducted by MIT in 2018
demonstrated that false news spreads on social media with
remarkable efficiency, traveling "farther, faster, deeper,
and more broadly" than true news (Study, 2018). Notably,
false stories were found to be 70% more likely to be
retweeted compared to factual ones (Study, 2018),
emphasizing how misinformation can rapidly permeate
networks dominated by real users rather than automated

bots (Study, 2018). The real-world consequences of this
phenomenon are significant. For instance, a study
published in Nature revealed that belief in COVID-19
misinformation was strongly correlated with reduced
compliance with public health guidelines and lower
vaccination intent (van der Linden, 2022), directly
impeding efforts to manage the pandemic. Beyond
healthcare, the widespread dissemination of falsehoods
online has eroded trust in institutions and exacerbated
political polarization (Lazer et al., 2018). A 2024 report
by NewsGuard further underscores the issue, noting that
"fake" local news sites now outnumber legitimate local
newspapers in the U.S. (“Sad Milestone,” n.d.). These
examples highlight not only the rapid spread of
misinformation but also its tangible harms, ranging from
undermining democratic discourse to jeopardizing public
health.

1.2 Objectives and Scope

In response to this growing threat, there is an urgent need
for robust fake news detection systems. We develop and
evaluate six distinct machine learning pipelines, spanning
classical ML text classifiers to advanced deep learning
models, and compare their performance.

The primary objectives of this project are threefold:

1. Compare diverse classification methodologies for
fake news detection, assessing trade-offs in accuracy,
computational demands, and interpretability to
identify optimal solutions.

2. Quantify model performance using key metrics, e.g.,
accuracy, precision, recall, and Fl-score, to ensure
the system effectively detects fake content while
minimizing the risk of misclassifying legitimate
articles.

3. Address practical deployment considerations,
including data quality, resource limitations, and
ethical concerns such as avoiding unjust censorship
or introducing systemic biases.

Through rigorous experimentation and evaluation, this
study seeks to establish best practices for deploying
reliable fake news detection systems in real-world online
environments, ensuring both effectiveness and responsible
implementation.
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2. Dataset

The dataset used in this study is the "News.csv" fake news
dataset sourced from Kaggle (News.Csv, n.d.), which
comprises 7,796 articles, each labeled as either “REAL”
or “FAKE”. The data were curated from a variety of
online news sources, with "real" news articles originating
from credible mainstream outlets and "fake" news articles
collected from unreliable or dubious websites. Each
record in the dataset includes four columns: an ID, the
article's title, the body text of the article, and a label
indicating whether the article is real or fake. For instance,
a typical entry contains the headline and full text of a
news article, along with a binary label identifying it as
true or false. We use only the article body (text column)
as our input feature, while the label acts as the target
variable.

The dataset is moderate in size, with 7,796 samples, and
notably balanced—approximately 50% of the articles are
labeled as real, and 50% as fake. Specifically, there are
3,897 articles labeled as REAL and 3,899 labeled as
FAKE, ensuring a nearly equal distribution between the
two classes. This balance mitigates concerns about
classification bias arising from class imbalance. The
topics covered in the dataset predominantly revolve
around political news and general world events, reflecting
the data collection period during significant political
events in the mid-2010s. Overall, the dataset provides a
realistic foundation for binary fake news classification,
encompassing both legitimate news and misinformation.
All articles are in English.

3. Pre-processing Steps

3.1 Data Cleaning

To ensure consistency and reduce noise in the dataset,
several data cleaning steps were performed. These steps
are designed to standardize the input and focus on
meaningful content while minimizing irrelevant or
redundant information.

3.1.1 REMOVAL OF PUNCTUATION AND SPECIAL
CHARACTERS

All punctuation marks (e.g., periods, commas, quotes,
exclamation points) and special symbols were removed
from the news text. A predefined punctuation list was
used to strip these characters, replacing them with
whitespace or removing them entirely as appropriate. This
step prevents punctuation from being treated as separate
tokens and reduces sparsity in representations like Bag-
of-Words. For example, the sentence “The election was
rigged!!!” would be transformed into “The election was
rigged.” Intra-word characters such as hyphens were
retained if they formed part of a word, but standalone
symbols were eliminated.

3.1.2 LOWERCASING

All text was converted to lowercase to normalize case
differences. This ensures that words like “Government”
and “government” are treated identically. Lowercasing
reduces vocabulary size for Bag-of-Words and TF-IDF
representations and helps models generalize across
inconsistent capitalization, particularly in titles. For
instance, “Fake” and “fake” become the same token:
"fake".

3.1.3 STOPWORD REMOVAL

For BoW and TF-IDF pipelines, we rely on
CountVectorizer(stop_words="english') and
TfidfVectorizer(stop_words='english") to
filter English stopwords. These frequent words, such as
"the," "is," "at," "on," "and," and "a," carry little semantic
value and are prevalent in both real and fake news,
typically offering no distinguishing power between
classes. In contrast, no explicit stopword removal is
applied in the GloVe, LSTM, BERT, or SBERT pipelines,
as these models either leverage contextual embeddings or
inherently handle stopwords through their tokenizers and
architectures.

3.1.4 NUMERICAL HANDLING

All digits are removed through re.sub(r'\d+", ,
text). Specific numbers, such as dates and statistics,
often lack generalizable significance, and treating all
numbers uniformly simplifies the model’s task.
Standalone numeric tokens were removed for consistency.

3.1.5 WHITESPACE AND FORMATTING NORMALIZATION

After completing the above steps, extra whitespace was
trimmed, and formatting inconsistencies were addressed.
This included collapsing multiple spaces into one and
stripping leading/trailing spaces. The result is a cleaned,
lowercased text string for each article, ready for
vectorization.

3.2 Label Encoding

The dataset includes categorical labels classifying articles
as “REAL” or “FAKE.” To facilitate binary classification,
these labels were encoded as integers: REAL as 0 and
FAKE as 1. This encoding ensures compatibility with
machine learning libraries such as scikit-learn and
PyTorch, enabling seamless integration with classification
algorithms.

3.3 Train-Validation-Test Split

To evaluate model performance effectively, the dataset
was divided into three distinct subsets: training,
validation, and testing. A common split ratio is 70% for
training, 20% for validation, and 10% for testing.
Stratified partitioning was employed to ensure that each
subset maintains a balanced distribution of labels,
preventing data leakage and enabling robust performance
assessment. Preprocessing was applied equally to both
training and test sets to avoid any subtle information
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bleed. Additionally, the training set was shuffled during
training to eliminate potential order effects.

4. Methodology

We developed and assessed six distinct machine
learning pipelines for fake news detection, ranging
from straightforward linear models that utilize sparse
text features to advanced neural network architectures
that leverage dense embeddings and transformer-based
approaches.

4.1 Traditional Supervised Classifiers

4.1.1 BAG-OF-WORDS + LOGISTIC REGRESSION

The Bag-of-Words (BoW) representation is a simple yet
effective approach for text classification tasks, including
fake news detection. In this pipeline, each article is
transformed into a high-dimensional vector of word
frequencies, where the order of words is disregarded, and
only the count of each word in the vocabulary is
considered. This method captures distinctive word usage
patterns that often differentiate fake news from real news.
For instance, certain propaganda phrases or clickbait
terms may appear more frequently in fake news, making
them identifiable through this representation.

After preprocessing the text, we constructed a vocabulary
consisting of all words appearing in the training set. Each
article was then converted into a sparse vector, where
each dimension corresponds to a word in the vocabulary,
and the value represents the frequency (count) of that
word in the article. For example, if the word “election”
appears three times in an article, the corresponding
feature for “election” would have a value of 3 in the
article’s vector. To manage dimensionality, we limited the
vocabulary to the top 10,000 most frequent words/terms
in both BoW and TF-IDF vectorizers, which still
accounted for the vast majority of word occurrences in the
corpus. The resulting feature vectors are high-dimensional
(10,000 dimensions) but very sparse, as each article
typically contains only a small subset of all possible
words.

For classification, we employed a Logistic Regression
(LR) model, a linear model that assigns a weight to each
input feature (word) to predict the probability of an article
being real or fake. Logistic regression is computationally
efficient, fast to train, and provides interpretable results.
By inspecting the learned weights, we can identify which
words contribute most to the classification decision—
words with high positive weights indicate real news,
while those with negative weights suggest fake news.
This interpretability offers valuable insights into the
model’s decision-making process.

To prevent overfitting in the large feature space, we
applied L1 regularization, tuning the regularization
strength on a validation split. The model was optimized

using gradient descent to minimize binary cross-entropy
loss. While BoW + LR serves as a baseline in our study, it
has demonstrated competitive performance in previous
research on fake news detection tasks (Israt Jahan et al.,
2024). However, its limitations lie in its inability to
capture semantic understanding or word order, which may
restrict its effectiveness when deceptive writing closely
mimics the style of legitimate news.

4.1.2 TF-IDF + LOGISTIC REGRESSION

In this pipeline, we transform the text using Term
Frequency-Inverse Document Frequency (TF-IDF),
replacing raw word counts with a weighted measure that
reflects the importance of words within a document
relative to their rarity across the corpus. TF-IDF
downweights common words like “the” or “is,” which
appear frequently but carry little discriminatory power,
while upweighting rare but informative terms. For
example, a specific term like “Pizzagate” will receive a
high TF-IDF score in articles where it appears, whereas
ubiquitous words like “the” will have scores close to zero.
Using scikit-learn’s TfidfVectorizer, we limited the
vocabulary to the top 5,000 terms and applied sublinear
TF scaling and IDF smoothing for robustness. The
resulting 5,000-dimensional feature vectors represent TF-
IDF scores rather than raw counts.

For classification, we employed Logistic Regression (LR)
with L1 regularization, optimized using gradient descent
to minimize binary cross-entropy loss. This setup mirrors
the BoW + LR pipeline but leverages TF-IDF’s ability to
highlight  discriminative  terms, improving class
separation. For instance, words like “conspiracy” that are
frequent in certain articles but rare overall receive higher
weights, enhancing their impact on classification. Logistic
Regression remains interpretable, allowing us to analyze
word weights to understand model decisions

4.2 Word Embeddings and Neural Networks

4.2.1 GLOVE + LOGISTIC REGRESSION

In this pipeline, we transition from sparse representations
like Bag-of-Words (BoW) and TF-IDF to dense semantic
representations using GloVe (Global Vectors for Word
Representation). Unlike BoW and TF-IDF, which treat
words as independent features, GloVe embeddings
capture semantic relationships between words by mapping
each word to a fixed-dimensional vector learned from a
large corpus. Specifically, we utilized the 100-
dimensional GloVe vectors trained on 6 billion tokens
from Wikipedia and Gigaword (the “glove.6B.100d”
dataset). These embeddings encode meaningful
relationships; for instance, “government” is closer in the
vector space to “administration,” and “election” is near
“vote.”

To represent an entire news article, we adopted a simple
aggregation approach: averaging the GloVe vectors of all
words in the article after preprocessing, stopword
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removal, and filtering out unknown terms. This produces
a single 100-dimensional vector that serves as a rough
semantic summary of the article’s content. While
averaging sacrifices word order and some nuanced
contextual information, it effectively reduces noise and
amplifies the core topic signal. For example, fake news
articles might cluster in a specific region of the
embedding space distinct from real news.

For classification, we used Logistic Regression (LR) with
L1 regularization, optimized to minimize binary cross-
entropy loss. The input features are now dense 100-
dimensional vectors instead of high-dimensional sparse
representations. With only 100 features, overfitting is less
of a concern, and training is extremely fast (<1 second).
LR attempts to find a linear decision boundary in the
embedding space that separates real from fake news,
effectively identifying regions where fake or real articles
tend to cluster. Handling out-of-vocabulary (OOV) words
was straightforward. Any word not present in the GloVe
vocabulary was ignored. Fortunately, GloVe’s extensive
coverage ensured that the vast majority of words in our
dataset had corresponding embeddings.

4.2.2 GLOVE+LSTM

In this pipeline, we employ a Long Short-Term Memory
(LSTM) network to capture word order and contextual
relationships, which are lost in simpler methods like
averaging embeddings. LSTMs, a type of recurrent neural
network (RNN), are well-suited for learning long-range
dependencies in sequential data, making them ideal for
tasks where context and phrasing matter.

The model architecture begins with an embedding layer
initialized using 100-dimensional GloVe vectors, which
provide dense semantic representations for each word. We
pre-compute these GloVe embeddings for each token and
feed them into an LSTM, processing up to 100 tokens per
article (with padding or truncation to ensure a consistent
length of 100). The final hidden state of the LSTM serves
as a learned summary of the entire article, which is then
passed through a dropout layer (rate 0.5) to prevent
overfitting. Finally, this representation is fed into a dense
layer with sigmoid activation for binary classification
(real or fake).

We implemented the model in PyTorch, training it on a
GPU for efficiency. Training used binary cross-entropy
loss and the Adam optimizer with an initial learning rate
of 0.001. Early stopping was applied to halt training if
validation loss did not improve for two consecutive
epochs, preventing overfitting on the relatively small
dataset. Dropout was also applied to embeddings and
LSTM outputs for regularization.

The LSTM excels at capturing patterns such as phrases,
emphasis, and negations—e.g., distinguishing “not a
hoax” from “a hoax”—which simpler models might miss.
It can also identify meaningful phrases like “is a hoax™ or
“According to the FBIL” adjusting embeddings and

weights to better fit the classification task. For instance,
the presence of words like “hoax” may drive predictions
toward fake news.

However, LSTMs are computationally intensive,
requiring significantly more training time than logistic
regression models (minutes per epoch). Without attention
mechanisms, capturing very long-range dependencies
remains challenging. While alternative pooling strategies
(e.g., averaging LSTM outputs) yielded similar results,
interpretability is lower compared to simpler models,
requiring advanced techniques like LIME to understand
predictions.

4.3 Transformer-based Approach

4.3.1 BERT

We  build on  Hugging Face’s  pre-trained
BERT-Base-Uncased model (12 layers, hidden size 768,
~110 M parameters) by fine-tuning it end-to-end on our
binary classification task. Each input is the preprocessed
news text (we lowercase, strip URLs/mentions/hashtags,
remove punctuation and digits, and collapse whitespace),
which we then feed to BERT’s WordPiece tokenizer
without additional stopword removal. We truncate or pad
every example to a maximum of 128 tokens (adding
[CLS] and [SEP] as required), since this length suffices to
capture titles and the bulk of the article content under our
GPU-memory constraints.

On top of BERT’s pooled [CLS] representation, we add a
single linear layer (768 — 2) and train using the model’s
built-in softmax + CrossEntropyLoss. We optimize with
AdamW (Ir=2x107°) and a linear learning-rate decay
over 5 epochs. On top of that, we fine-tune all BERT
parameters plus the classification head for 5 epochs (batch
size = 16), saving the checkpoint that yields the best
validation accuracy.

BERT’s bidirectional transformer architecture allows it to
consider context from both directions, capturing nuanced
linguistic patterns that simpler models might miss. For
example, it can recognize subtle cues such as skepticism
in tone or inconsistencies in narratives that suggest
fabrication. Recent research has demonstrated the
effectiveness of transformer-based models like BERT in
misinformation detection tasks (Lazer et al., 2018), often
achieving state-of-the-art performance by identifying
complex relationships and uncommon phrasing indicative
of fake news.

Despite its strengths, BERT comes with trade-offs. Its
high computational cost and slower inference times make
it less practical for resource-constrained environments
compared to simpler models like logistic regression.
Additionally, BERT is inherently less interpretable due to
its black-box nature, though techniques like attention
weight analysis or explainability methods (e.g., LIME)
could provide insights into its decision-making process. In
contrast, logistic regression models allow direct
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inspection of feature importance, offering greater
transparency at the expense of performance.

4.3.2 SENTENCE TRANSFORMER + LOGISTIC REGRESSION

In this pipeline, we combine the semantic capabilities of
transformer-based models with the simplicity and
efficiency of a linear classifier. We use Sentence-BERT
(SBERT), a modified version of BERT that generates
fixed-length sentence embeddings optimized for semantic
similarity and text classification tasks (arxiv.org).
Specifically, we employ the all-MinilLM-L6-v2 model
from the SentenceTransformers library, which outputs
384-dimensional embeddings. This distilled version of
BERT is compact (6 layers) yet retains strong contextual
understanding.

For each news article, we concatenated the title and body
text and fed it into the SBERT model to produce a 384-
dimensional vector representation. Unlike simpler
methods like averaging GloVe embeddings or using
BERT’s [CLS] token, these embeddings are specifically
designed to capture the overall meaning of the text in a
high-dimensional semantic space. Importantly, we treated
SBERT as a fixed feature extractor, avoiding fine-tuning
to save computational resources and accelerate training.
We then trained a logistic regression classifier (L1-
regularized) on these embeddings to predict whether an
article was real or fake. This two-stage approach involves
using a pre-trained model to generate semantically rich
features, followed by a simple linear classifier for
predictions.

We expect the Sentence-BERT embeddings to effectively
capture high-level distinctions in writing style and content
between fake and real news. In this approach, logistic
regression simply needs to establish a linear decision
boundary within the high-dimensional semantic space
provided by the embeddings. This method offers
significant advantages, including rapid training—since the
computationally intensive work is handled by the pre-
trained SBERT model—and lower resource demands
during inference compared to fine-tuning a full BERT
model. While it may not match the peak performance of
fine-tuned BERT, it achieves strong results by leveraging
transformer-based representations. Additionally, the use
of logistic regression allows for straightforward
inspection of classifier weights in the embedding space,
though interpreting these weights is less intuitive than
analyzing word-based features.

5. Results

5.1 Overview

After training all models on the training set, we evaluated
their performance on the test set (606 unseen news
articles). The performance metrics used for evaluation are
Accuracy, Precision, Recall, and F1 Score. In the context
of this binary classification, we define these metrics with

fake news being the positive class (for computing
precision and recall, though we also report overall
accuracy and macro-averaged F1 which is the same as the
F1 for positive in a balanced dataset).

e Accuracy: The percentage of articles (both real and
fake) correctly classified by the model out of the total
number of test articles.

e Precision (for the Fake class): The proportion of
articles labeled as "fake" by the model that are
actually fake.

o Recall (for the Fake class): The percentage of actual
fake news articles correctly identified by the model,
calculated.

e F1 Score : The harmonic mean of precision and
recall for the fake class, providing a balanced
measure of the model's performance. In this balanced
dataset, the F1 score for fake and real classes is
similar, and the reported value represents the macro-
average F1.

Table 1. Performance of Different Models on Fake News
Detection (test set).

MOoODEL ACCURACY  PRECISION  RECALL F1
1.BoW+LR 0.93 0.91 0.95 0.93
2. TF-IDF +LR 0.94 0.94 0.93 0.94
3.GLOVE+LR 0.84 0.84 0.86 0.85
4. GLOVE + 0.88 0.88 0.87 0.88
LSTM

5.BERT 0.93 0.95 0.92 0.93
6. SENTENCE- 0.85 0.85 0.87 0.86
BERT +LR

The Bag-of-Words (BoW) + Logistic Regression (LR)
model emerged as the top performer in terms of recall,
achieving 95%, which underscores its effectiveness in
identifying fake news and minimizing false negatives.
This makes it particularly valuable for applications where
failing to detect fake news could have serious
consequences. While the TF-IDF + Logistic Regression
and fine-tuned BERT models also demonstrated strong
overall performance, with accuracies of 94% and 93%,
respectively, their recall values were slightly lower,
indicating a trade-off between precision and recall.
Meanwhile, GloVe-based models—both the LR and
LSTM variants—and Sentence-BERT showed
comparatively weaker results, highlighting the limitations
of generalized embeddings when it comes to capturing the
nuanced features necessary for detecting misinformation.

The choice of text representation played a critical role in
determining model performance. TF-IDF weighting
proved to be more effective than raw counts, emphasizing
the importance of factoring in word rarity. Contextual
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models, such as LSTM and transformer-based approaches
like BERT and Sentence-BERT, significantly
outperformed simpler methods like GloVe averaging.
These advanced models delivered higher accuracy by
leveraging contextual understanding and transfer learning,
demonstrating their ability to capture subtle linguistic
patterns that simpler models might miss. To better
understand the behavior of each model, confusion
matrices were generated, providing deeper insights into
their strengths and weaknesses across different
classification scenarios. This analysis reinforces the value
of transformer-based architectures in achieving state-of-
the-art results for fake news detection.

5.2 Confusion Matrices and Model Insights

Each confusion matrix highlights the number of correctly
and incorrectly classified real and fake news articles. Key
observations include:

e BoW + LR: Achieved a recall of 95%, indicating
strong performance in identifying fake news, but
exhibited slightly higher false positives (9%). This
suggests that the model may misclassify some
legitimate articles containing unusual or sensational
terms as fake.

e TF-IDF + LR: Improved over BoW, with only 234
errors per class (468 total errors vs. 624 for BoW).
The reduction in errors suggests that down-weighting
common terms helped the model rely more on
distinctive words, reducing confusion on articles with
filler words.

e GloVe + LR: Showed larger errors (428 vs. 234 in
the TF-IDF case), confirming that averaged
embeddings are less discriminative. The model
struggled to distinguish between topics in the
semantic space, leading to misclassifications.

e GloVe + LSTM: Reduced errors compared to GloVe
+ LR (273 vs. 428 per class), demonstrating the value
of sequence modeling. The LSTM captured context
more effectively, resolving ambiguities present in
simpler models.

e Fine-Tuned BERT: Achieved near-perfect
performance, with only 156 errors per class. This
underscores BERT’s ability to capture subtle
linguistic patterns and contextual understanding.

e SBERT + LR: Achieved recall of 87% and accuracy
of 85%, delivering near state-of-the-art performance
without fine-tuning. This validates SBERT as an
efficient feature extractor, retaining much of the
information captured by fine-tuned BERT.

6. Discussion

6.1 Key Insights

The evaluation provided critical insights into the
effectiveness of various machine learning models for fake
news detection, highlighting distinct strengths and trade-
offs across approaches. Notably, the Bag-of-Words
(BoW) + Logistic Regression (LR) model demonstrated
exceptional recall (95%), underscoring its ability to detect
subtle lexical cues that distinguish fake news. Despite its
simplicity, this model excelled in minimizing false
negatives—a key priority in practical misinformation
monitoring scenarios where failing to identify fake news
can have significant consequences.

The TF-IDF + LR model achieved a well-rounded
performance with high accuracy (94%) and robust recall
(93%), illustrating the advantages of term-weighting
techniques in emphasizing distinctive lexical patterns. By
down-weighting common terms and focusing on rarer,
more discriminative features, this approach effectively
reduced ambiguity in classification. In contrast, the fine-
tuned BERT model, while achieving slightly lower recall
(92%), demonstrated superior precision (95%). This
highlights BERT’s strength in capturing nuanced
contextual relationships, making it particularly valuable
for cases requiring deeper semantic understanding or
secondary verification.

In comparison, GloVe embedding-based models exhibited
weaker performance, revealing the limitations of relying
solely on averaged semantic embeddings. While
incorporating sequential context through an LSTM
improved results relative to simple averaging, these
models still fell short of the performance achieved by TF-
IDF and transformer-based methods. The Sentence-BERT
+ LR model delivered moderate recall (87%), capturing
some contextual nuances but ultimately lagging behind
simpler lexical models. This discrepancy may stem from
the fixed nature of pre-trained embeddings, which lack
the adaptability of task-specific fine-tuning and may
struggle to fully capture domain-specific characteristics of
fake news.

These findings underscore the importance of selecting the
right approach based on the specific priorities of the
application—whether ~ minimizing false negatives,
achieving high precision, or balancing both. Transformer-
based models like BERT offer state-of-the-art
performance, but simpler methods such as Bow + LR and
TF-IDF + LR remain highly competitive, particularly in
resource-constrained or interpretability-focused scenarios.

6.2 Trade-offs and Recommendations

Given the project's emphasis on minimizing false
negatives, ensuring that fake news is detected as
effectively as possible, the Bag-of-Words (BoW) +
Logistic Regression (LR) model emerges as the most
suitable choice for primary deployment. This model
achieved an impressive recall of 95%, making it highly
effective at identifying fake news articles and reducing
the risk of overlooking potentially  harmful
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misinformation. While its precision is slightly lower at
91%, this trade-off results in a manageable increase in
false positives, which can be addressed through
subsequent human review or by integrating a secondary
verification step using more precision-focused models
like fine-tuned BERT. This layered approach ensures that
the system remains robust while maintaining a strong
focus on recall, which is critical in high-stakes
applications where failing to detect fake news could have
significant consequences.

For scenarios where computational resources or
scalability are a concern, the TF-IDF + LR model offers a
compelling alternative. With a balanced performance
across accuracy (94%), recall (93%), and precision (94%),
this model strikes an optimal compromise between
effectiveness and  efficiency.  Additionally, its
interpretability makes it particularly valuable in contexts
where transparency and explainability are important, such
as when justifying decisions to stakeholders or users. The
use of term frequency-inverse document frequency (TF-
IDF) weighting enhances the model's ability to focus on
distinctive terms, reducing confusion caused by common
filler words. As a result, TF-IDF + LR is well-suited for
large-scale deployments where computational cost and
ease of interpretation are prioritized without significantly
compromising performance.

On the other hand, while fine-tuned BERT demonstrates
state-of-the-art capabilities with an accuracy and recall of
93% and precision of 95%, its computational demands
make it less practical for frontline classification in
resource-constrained ~ environments. BERT’s  deep
contextual understanding allows it to capture nuanced
linguistic patterns that simpler models might miss,
making it ideal for handling complex or borderline cases.
However, its reliance on GPU acceleration and longer
inference times render it better suited as a secondary
verifier rather than a primary classifier. By deploying
BERT in this capacity, organizations can leverage its
strengths for challenging instances while relying on
lighter models like BoW + LR or TF-IDF + LR for bulk
processing.

In short, the choice of model should align with the
specific priorities and constraints of the deployment
scenario. For applications where recall is paramount,
BoW + LR serves as the top choice due to its exceptional
ability to minimize false negatives. When balancing
performance  with  computational efficiency and
interpretability, TF-IDF + LR provides a versatile
solution. Meanwhile, fine-tuned BERT can be reserved
for high-precision secondary verification or specialized
tasks requiring deeper contextual analysis. This tiered
strategy not only maximizes detection efficacy but also
ensures adaptability across diverse operational settings.

6.3 Generalization and Robustness

While Bag-of-Words (BoW) and TF-IDF models
demonstrated strong performance in detecting fake news,
their reliance on static lexical features may limit their
adaptability to rapidly evolving misinformation tactics.
These models are particularly vulnerable to shifts in
language use, such as the emergence of new slang,
idioms, or trending phrases that were not present in the
training data. For instance, if fake news creators begin
using novel terms or framing techniques to evade
detection, BoW and TF-IDF models might fail to
recognize these changes due to their inability to
generalize beyond the specific patterns they were trained
on. This brittleness underscores the importance of
regularly updating and retraining such models to maintain
their effectiveness in dynamic environments.

In contrast, transformer-based models like BERT exhibit
a deeper contextual understanding, enabling them to
better handle linguistic nuances and adapt to evolving
language patterns. By leveraging subword tokenization
and contextual embeddings, BERT can infer the meaning
of previously unseen terms and capture subtle semantic
relationships that simpler models might miss. This
inherent flexibility makes BERT particularly well-suited
for environments where misinformation tactics are
constantly  changing. =~ However, while BERT’s
architecture provides a theoretical advantage in
robustness, its real-world performance in highly dynamic
contexts remains an area for further empirical validation.
Testing the model against datasets featuring emerging
linguistic trends or adversarial examples would be critical
to fully assess its generalization capabilities.

Another consideration is the trade-off between complexity
and adaptability. While BERT offers superior robustness,
its computational demands may pose challenges for real-
time applications or large-scale deployments. In scenarios
where computational resources are constrained, hybrid
approaches—such as combining lightweight models with
periodic updates from more advanced models—could
strike a balance between efficiency and adaptability.
Overall, ensuring robustness in fake news detection
requires not only selecting the right model but also
implementing strategies to address the ever-changing
nature of misinformation.

6.4 Ethical and Practical Considerations

6.4.1 MINIMIZING FALSE NEGATIVES

Disinformation campaigns inevitably evolve to outsmart
detection systems. For instance, if a classifier depends
heavily on certain buzzwords or stylistic signals, bad
actors will learn to avoid those markers and slip past
filters. This ongoing “cat-and-mouse” interplay means our
models must be continually retrained and fine-tuned.
Transformer-based architectures such as BERT offer
greater resilience, since they leverage deep contextual
cues rather than surface-level patterns alone. Still,
attackers may craft ostensibly factual content that subtly
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distorts the truth—posing a serious challenge even for
state-of-the-art models. Maintaining robustness against
these sophisticated manipulations demands investment in
adversarial training strategies and a commitment to
proactive model updates.

6.4.2 AVOIDING FALSE POSITIVES

False positives, i.e., misidentifying legitimate news as
fake, carry their own risks by undermining trusted sources
and eroding confidence in the detection system. Even a
seemingly low false positive rate of 4-5%, as seen in our
strongest models, can translate into thousands of wrongly
flagged articles at scale. Imagine a respected news
outlet’s coverage or time-sensitive briefs being
mislabeled, such errors could have serious reputational
and societal repercussions. To guard against this, we
should introduce secondary review workflows or
human-in-the-loop checks for any content the model
flags. In addition, we can fine-tune classification
thresholds to the context, prioritizing precision over recall
in situations where avoiding false positives is critical, to
strike the right balance between safety and coverage.

6.4.3 ADVERSARIAL ADAPTATION

Fake news creators continually tweak their tactics once
they discover how our detectors work. If a system leans
on specific keywords or writing patterns, attackers will
simply avoid or disguise those signals to slip by. This
ongoing “cat-and-mouse” cycle means our detection
models must be in a state of constant evolution of being
regularly retrained and fine-tuned. Transformer
architectures like BERT help, since they draw on deep
contextual understanding rather than just surface features,
but even they can be fooled by material that reads like
legitimate reporting yet subtly twists the facts. Building
true resilience requires a dedicated investment in
adversarial training techniques and a disciplined regimen
of proactive model updates.

6.4.4 BIAS IN TRAINING DATA

A model is only as good as the data it’s trained on. When
certain  segments—whether  political  viewpoints,
geographic regions, or subject areas—dominate the
training set, the model can pick up unwanted biases. In
practice, this might mean that content from particular
outlets or in specific writing styles is flagged more often,
even when it’s entirely accurate. These imbalances not
only compromise fairness but also chip away at the
credibility of affected publishers and shake reader
confidence. To prevent this, we must assemble training
data that truly spans the full spectrum of news
perspectives and topics. On top of that, periodic audits
and bias reviews will keep our models honest and help
maintain trust in their judgments.

6.4.5 BROADER ETHICAL CONSIDERATIONS

Beyond technical challenges, the ethical implications of
deploying a fake news detection system must be carefully
considered:

e Transparency: Everyone from end-users to
stakeholders needs clarity on how the system arrives
at its judgments. Simple approaches like
bag-of-words paired with logistic regression offer
straightforward explainability, but deep models such
as BERT can feel like “black boxes.” We’ll need
interpretability aids, such as SHAP value breakdowns
or attention-weight visualizations, to open the hood
on these complex predictions.

e Misuse Risks: Left unchecked, an automated filter
can become a tool for censorship or for silencing
inconvenient viewpoints. Rather than positioning the
detector as a gatekeeper, we should embed it as an
assistive layer—flagging questionable content for
human review and keeping final decision-making
squarely in human hands.

e Satire and Humor: Satirical pieces and parodies
play fast and loose with facts for comedic effect, not
to deceive. Treating them as outright disinformation
risks unjust takedowns and erodes the credibility of
genuine content. Handling this nuance effectively
may require a multi-class classification framework or
dedicated model component trained specifically to
detect comedic intent.

7. Conclusion

In this project, we built and benchmarked six
machine-learning pipelines for fake-news detection on a
Kaggle dataset, achieving strong performance across the
board—from 93 % accuracy with a simple bag-of-words
plus logistic regression model to 93 % with a fine-tuned
BERT transformer. Our findings highlight the pivotal role
of text representation: TF-IDF  vectors and
transformer-based embeddings consistently outshine raw
token counts and averaged embeddings by capturing both
lexical and contextual subtleties. While BERT delivers
top accuracy, hybrid approaches such as SBERT
combined with logistic regression offer an attractive
trade-off between predictive power and computational
cost.

We see three clear avenues for next steps. First, we’ll
broaden the classifier to handle multiple categories—such
as separating satire from harmful falsehoods—and ensure
it generalizes across different news domains by weaving
in metadata cues. Second, we plan to layer in
explainability tools and ensemble strategies to boost both
transparency and resilience. Ultimately, our results
highlight the real power of NLP-driven approaches to
combat misinformation—so long as we keep refining our
models to stay ahead of new tactics.
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