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Abstract

This project develops an LLM-powered solution
to assess medication order safety by analyzing pa-
tient profiles and drug monographs. We explored
Retrieval-Augmented Generation, few-shot full-
context prompting, and supervised fine-tuning,
using comprehensive metrics to assess both clas-
sification accuracy and reasoning quality. Our
solution reduces pharmacist verification workload
while maintaining medication safety through high-
recall detection of unsafe orders and interpretable
justifications.

1. Introduction
1.1. Background

Hospital pharmacists play a pivotal role in safeguarding
patient safety by participating in ward rounds and verifying
that prescribed medications are appropriate and effective
(Babu et al., 2023). Their responsibilities extend beyond
medication order verification to include dispensing, patient
counseling, procurement, and responding to drug-related
inquiries (Studer et al., 2023). However, the demanding
nature of hospital environments can make it challenging
to consistently identify subtle medication interactions or
context-specific risks.

Medication errors remain a significant concern within health-
care systems worldwide. A medication error is defined as a
failure in the medication-use process that may or may not re-
sult in patient harm (Rodziewicz et al., 2024). According to
the World Health Organization (WHO), medication-related
harm affects 1 in every 30 patients receiving healthcare,
with more than a quarter of these cases classified as severe
or life-threatening. Notably, half of all avoidable harm in
healthcare is related to medication errors (World Health
Organization, 2024; Tariq et al., 2024).

In Singapore, the current pharmacy systems aggregate var-
ious types of patient data — including medical history, al-
lergy status, and visit and medication order information —
from multiple sources. When a medication order is placed,

pharmacists must manually cross-reference patient infor-
mation and external drug databases to identify potential
drug interactions, duplicate therapies, or contraindications.
This manual process increases the risk of human error and
missed safety alerts. Studies have shown that nearly 50% of
all medication errors occur during the prescribing or order-
ing stages, and nurses and pharmacists detect between 30%
to 70% of these errors.

Without an automated mechanism to proactively flag po-
tential risks, patients remain vulnerable to preventable
medication-related complications. The integration of ad-
vanced technologies, such as Large Language Models
(LLMs), into the medication order verification process of-
fers the potential to enhance the accuracy and efficiency of
pharmacists’ reviews, ultimately improving patient safety
outcomes.

1.2. Objective

This project aims to develop a Large Language Model
(LLM)-powered solution to assess the safety of medica-
tion orders by analyzing specific patient profiles alongside
drug monograph information. The system is designed to
output: (i) a classification of each medication order as either
’safe’ or ’unsafe’ and (ii) a justification for the decision,
detailing the rationale behind the classification.

Safe orders will be automatically verified and removed
from the pharmacist’s work-list, while unsafe orders will
be flagged for manual review, accompanied by the rea-
sons for failing auto-verification. By reducing the veri-
fication workload, pharmacists can devote more time to
complex cases and high-value clinical interventions. This
approach not only enhances decision support but also mini-
mizes medication-related risks, ultimately improving patient
safety.
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2. Dataset Preparation
2.1. Dataset Description
2.1.1. DRUG MONOGRAPH

This project utilized the open-source openFDA Drug Prod-
uct Labeling API to retrieve comprehensive drug monograph
information. The API provides access to structured data
submitted by drug manufacturers and distributors, encom-
passing both prescription and over-the-counter medications.
The drug labels are segmented into sections such as indi-
cations for use, adverse reactions, and dosage instructions,
facilitating targeted information retrieval. The drug labeling
is considered a “’living document,” updated over time to
reflect new information regarding a drug’s safety and effec-
tiveness. According to openFDA, the API data is refreshed
on a weekly basis (Food & Administration, 2025). For this
project, API calls were made for 27 unique medications.

2.1.2. PATIENT AND MEDICATION ORDER

Due to the sensitive and confidential nature of patient
data, accessing real-world clinical datasets is often time-
consuming, costly, and subject to strict privacy regulations.
To address these challenges, synthetic data was used in this
project. Synthetic datasets offer several key advantages,
including enabling early-stage development, hypothesis test-
ing, and method validation without the need for immediate
access to real patient information. This approach not only
preserves privacy but also enhances research reproducibility
(Kokosi & Harron, 2022). Synthetic patient profiles and
medication orders were therefore generated to support the
goals of this project while ensuring compliance with privacy
standards. These synthetic profiles include demographic
information (e.g., height, weight, latest vitals), past med-
ical history, allergy status, concomitant medications, and
relevant laboratory or imaging results.

The patient profiles were carefully curated by a member
of our project team, a practicing clinical pharmacist with
over five years of hospital experience. Real-world patient
information was adapted to cover a diverse range of cases
(e.g., pediatrics, geriatrics) and various medication-related
risks. This approach ensured robust stress-testing of the
solution against realistic clinical scenarios.

For the medication order dataset, the features consists of the
route, medication name, formulation, dosing and frequency.
Each medication order is labeled as ’safe” or “unsafe,” along
with the pharmacist’s reasoning behind the classification.
Given the time and expertise required to curate these cases,
the dataset is limited to 50 medication orders. Our dataset
consists of 23 safe medication orders and 27 unsafe medica-
tion orders. Table 1 below describes the patient information
while Table 2 describes the medication order information.

Feature Description
patient_id Patient ID
age Age
sex Gender
height_m Height in metres
weight_kg Weight in kg
hr_latest Latest heart rate
sbp_latest Latest systolic blood pressure
allergy Allergy status
pmhx Past medical history
issue Active Issue for currently
whbc White blood cell count
hb Hemoglobin levels
plt Platelet count

high_sens_crp
urea
crcl
egfr

sodium
potassium
magnesium
calcium
bicarb
ast

alt
albumin
ck
glucose
hbalc
hdl

1d1

tg
microb
imaging

concomitant meds

C-reactive protein levels

Urea levels

Creatinine Clearance
Estimated glomerular filtration
rate

Blood sodium levels

Blood potassium levels

Blood magnesium levels
Blood calcium levels
Bicarbonate levels

Aspartate aminotransferase lev-
els

Alanine aminotransferase levels
Albumin levels

Creatinine Kinase

Fasting blood glucose levels
Hemoglobin A1C
High-density lipoprotein
Low-density lipoprotein
Ttriglycerides levels
Microbiology report summary
Imaging report summary
Concomitant Medication

Table 1. Patient Profile Dataset Features

Feature \

Description

order_id
patient_id
route
medication
formulation
dose
dose_unit
freq

label
reason_fyi

Medication Order ID

Patient ID

Route of administration
Medication name
Formulation of medication
Dosage quantity

Dosage Unit of Measurement
Frequency

Label (’safe” or "unsafe”)
Justfication for label

Table 2. Medication Order Dataset Features
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Some examples of drug-related problems for the unsafe or-
ders include Overdose/ Underdose, Renal dose adjustment,
Serious adverse reactions, Boxed warnings, Drug interac-
tions, Pregnancy contraindication, Age-related contraindi-
cation, Allergy, Drug administration issues and Missing
drug monograph information.

To err on the side of caution, if an openFDA API call fails
(i.e., no drug monograph information is available), the cor-
responding order is classified as ”unsafe’ due to insufficient
information. This ensures that such orders are escalated to
pharmacists for manual review. Pharmacist rationales for
safe and unsafe labels were later used to construct a Chain-
of-Thought dataset for fine-tuning; see Methodology)

2.2. Dataset Splitting

As the project explores various LLM methodologies, includ-
ing supervised fine-tuning, it is necessary to split the dataset
into training and testing sets. Splitting was performed based
on the type of medication-related problem. For instance, if
two medication orders were labeled “unsafe” due to inad-
equate renal dose adjustment in patients with renal impair-
ment, one order was allocated to the training set and the
other to the testing set to ensure balanced representation.

This stratified splitting approach ensures that both the train-
ing and testing datasets are representative of the range of
medication-related issues observed, thereby enhancing the
robustness and generalization of the model (Huo et al.,
2023). Out of the 50 medication orders, 25 orders were
assigned to the training set and 25 orders were assigned to
the testing set.

2.3. Dataset Processing
2.3.1. PATIENT AND MEDICATION ORDER

The raw patient profiles and medication order information,
initially stored in Excel files, were concatenated into stan-
dardized strings following a consistent template. This ap-
proach ensures uniform formatting across all 50 medication
orders, providing structured and predictable input for the
LLM. These formatted strings are included as part of the
LLM context information during model input.

A sample of the processed patient and medication order
string is shown in Appendix A.

2.3.2. DRUG MONOGRAPH

The drug monograph information retrieved from openFDA
displayed considerable variability in both the sections in-
cluded and their content, reflecting the diverse character-
istics of individual drug products. The longest mono-
graph retrieved — for Tramadol Hydrochloride — con-
tained 26,354 words, highlighting the significant poten-

tial for large, inefficient context lengths when using raw
monographs directly. Furthermore, several sections, such as
clinical_pharmacology, mechanism_of_action, and pharma-
codynamics, primarily provide clinical trial or mechanistic
details that are not directly relevant to a pharmacist’s verifi-
cation workflow. These sections are often lengthy and not
critical for medication order safety assessment.

To optimize context window usage (critical for LLM
efficiency) and focus the model’s attention on clini-
cally actionable information, irrelevant sections were
removed. Only the following sections were retained:
boxed_warnings, warnings, contraindications, do_not_use,
dosage_and_administration, pregnancy.

These selections were validated by a clinical pharmacist to
ensure that all necessary information for safe medication
classification is captured. A sample of the processed drug
monograph is shown in Appendix B.

3. Methodology

This project explored multiple approaches to determine the
most effective strategy for classifying medication orders as
’safe’ or unsafe.” The approaches included (1) Retrieval-
Augmented Generation (RAG), (2) direct context few-shot
feeding (’full context prompting”), and (3) supervised fine-
tuning of Large Language Models (LLMs) using the Unsloth
framework.

3.1. Retrieval Augmented Generation

The Retrieval-Augmented Generation (RAG) framework
was adopted to leverage on the strength of both informa-
tion retrieval into the reasoning process of a large language
model (LLM) (Lewis et al., 2020). In the context of medi-
cation order safety verification, RAG simulates the typical
pharmacist workflow: reviewing the patient profile and or-
der details, retrieving relevant drug information and finally
determining the clinical safety of the prescribed medication.

3.1.1. PROMPT DESIGN

Several methodological decisions were made to further en-
hance the performance and reliability of the RAG method.
First, a targeted retrieval strategy was implemented ensuring
that only the drug monograph segments directly relevant to
the medication order were retrieved. Additional strict filter-
ing measures were implemented to prevent irrelevant drug
information from being included in the prompt, which could
otherwise compromise the quality of the LLM’s response.
Second, context-aware retrieval was incorporated, whereby
patient-specific factors, such as the presence of renal impair-
ment or pregnancy status were considered during the prompt
construction to better highlight clinically significant risks
during evaluation (Brown et al., 2020). Thrid, a standard-
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ized prompt structuring method was adopted across all cases.
Each prompt consistently followed a defined sequence:

 Patient Clinical Context: Structured information ex-
tracted from patient profile, including demographic,
diagnoses, laboratory results vital signs and concurrent
medications.

* Medication Order Details: The specific medication(s)
ordered for that patient, including dose, route and fre-
quency

* Relevant Drug Information: Retrieved by RAG re-
triever based on the identified drug from FAISS vector
store, where each drug monograph has been prepro-
cessed to include only clinically actionable actions.
The retrieving process leverages FAISS for effcient
and effective multi-resolution recall (MRR) search.

* Question: Is this medication order safe for the given
patient profile? Provide reasons to support your an-
swer.”

The prompt structuring reduced interpretation variability
that ensures LLM is able to reason systematically. Refer to
Appendix C for sample template.

3.1.2. RAG FINE-TUNING

Natrually, the quality of RAG approach response quality
is heavily influenced by the quality and accuracy of the re-
trieved drug information. To optimize information retrieval
and ensure clinical relevance, the original drug monograph
were first preprocessed to extract only key actional sections,
such as boxed warnings, contradictions, pregnancy-related
warnings and dosage guidelines. This reduced the risk of
introducing unnecessary noise into retrieval process.

Beyond preprocessing, a target maximum character length
of 1000 per chunk was adopted. This size was selected based
on the need to preserve coherent clinical information while
avoiding excessive context length that could dilute retrieval
specificity. During the retrieval, a top k strategy was adopted
to select the most relevant chunks for each query. The value
of k is set as 5 to balance two competing objectives: (i)
ensuring sufficient coverage of potential safety issues across
different sections of the monograph, and (ii) maintaining
a compact prompt size to prevent overwhelming the LLM
on its response generation(OpenAl, 2023). Finally, the
standardized prompt template was input into three LLMs
(Qwen-0.5B, GPT-3.5, and GPT-40) for evaluation.

3.2. Direct context few-shot prompting

To further improve on the LLM output, we hypothesize that
enhancements can be made via 3 main changes. Firstly,

instead of using Retrieval-Augmented Generation (RAG)
to selectively retrieve chunks of drug monograph data, we
provided the entire monograph directly in the context. This
would help to ensure that all pertinent monograph infor-
mation has been fed into the context and helps prevent
omission of important during retrieval as imperfect chunk-
ing can result in information leakage. Secondly, a larger
model “suayptalha/DeepSeek-R1-Distill-Llama-3B” was
implemented as DeepSeek has slightly better reasoning capa-
bilities and using a model with size 3B would also improve
the output quality having better contextual understanding
and generation fluency. However, due to resource constraint,
this is the largest model that could be implemented. Thirdly,
we provided 4-shot prompting in the context, giving 2 exam-
ples of safe and unsafe prescriptions each. This would help
the LLM train on the type of output we expect, learn from
the reasoning patterns and tones, allowing it to generate a
more short and concise answer that is contextually grounded
and aligned with our expectations.

3.3. Supervised Finetuning using Unsloth

We have also explored a supervised finetuning approach
for this project, using the Unsloth framework to adapt the
DeepSeek-R1-Distill-Llama-8B model for the medication
safety verification task.

Unsloth is a Python-based framework optimized for efficient
Low-Rank Adaptation (LoRA) fine-tuning. It accelerates
the fine-tuning process by manually deriving matrix differ-
entials and chaining matrix multiplications, significantly
reducing computational overhead. Built atop the Hugging
Face Transformers library, Unsloth combines the robustness
of Transformers with enhanced optimization for speed and
memory efficiency (Han, 2023).

The base model selected was DeepSeek-R1-Distill-Llama-
8B, known for its strong chain-of-thought (CoT) reason-
ing capabilities—a crucial feature for clinical safety tasks.
DeepSeek-R1 builds upon DeepSeek-R1-Zero (the first
open-source model trained purely via large-scale reinforce-
ment learning) by introducing cold-start supervised pretrain-
ing prior to reinforcement learning, improving clarity, read-
ability, and performance on math, coding, and reasoning
benchmarks (HuggingFace, 2025; Xu, 2025).

3.3.1. FINE-TUNING CONFIGURATION

To accommodate GPU memory constraints, the model was
loaded at 4-bit precision. Fine-tuning was further optimized
through Low-Rank Adaptation (LoRA) applied to key atten-
tion weight matrices (e.g., query and value projections) with
arank of 16. This selective tuning approach enabled adapta-
tion of the model’s reasoning pathways without exceeding a
12 GB VRAM limit.
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3.3.2. FINE-TUNING DATASET

The SFT training dataset consisted of three columns:

* Question: A concatenation of patient profile informa-
tion, medication order information, and relevant drug
monograph sections for each of the 25 training set
orders.

e Complex_CoT: Pharmacist-authored, step-by-step
Chain-of-Thought (CoT) rationales explaining the
”safe” or “unsafe” classification.

* Response: The expected final structured output from
the model.

The dataset was embedded into prompts using a structured
template, explicitly instructing the model to generate inter-
mediate reasoning steps before providing a final classifica-
tion. There is zero-shot prompting for this approach. During
inference, only the model’s final classification was extracted
to simulate a production workflow.

Fine-tuning the model on our custom dataset was crucial,
as the specific structure of the pharmacist’s reasoning and
response style is highly specialized to the medication veri-
fication process, differing significantly from generic LLM
behavior (see Appendix D for an example of Pharmacist’s
CoT). Hyperparameter tuning was also employed, with tem-
peratures and number of epochs adjusted.

Unsloth’s optimizations enabled fine-tuning of the 8B-
parameter model on a single GPU at approximately 2x faster
training speeds compared to vanilla Transformers (Unsloth,
2025). By coercing the model to generate CoT rationales,
we maintained transparency in the decision-making process.
Unlike generic RAG or full context prompting, supervised
fine-tuning allowed the model to internalize the reasoning
structure of pharmacists, thereby reducing reliance on large
context injections and improving scalability. Given the small
training dataset (25 orders), this fine-tuning was exploratory
in nature, aimed primarily at assessing the feasibility of
adapting reasoning models to the medication safety verifica-
tion task. Future work should focus on scaling the training
corpus to enhance generalization and performance.

4. Evaluation Metric Selection
4.1. Prediction Quality

We defined unsafe medication orders as the positive class.
Model predictions (i.e., safe or unsafe) were compared
against pharmacist-labeled ground truth to compute:

* True Positives (TP) — Unsafe orders correctly classi-
fied as unsafe

« False Negatives (FN) — Unsafe orders incorrectly clas-
sified as safe

» False Positives (FP) — Safe orders incorrectly classi-
fied as unsafe

* True Negatives (TN) — Safe orders correctly classified
as safe

Given the critical importance of medication safety and the
potential for patient harm, minimizing False Negatives was
prioritized. Therefore, Recall (also known as sensitivity)
for unsafe orders was selected as the primary evaluation
metric. This ensures the model effectively captures unsafe
prescriptions, thereby reducing the risk of medication errors.

While False Positives—unnecessarily flagging safe or-
ders—pose minimal direct clinical risk due to subsequent
pharmacist review, reducing them is desirable to enhance
workflow efficiency. Consequently, Specificity (True Neg-
ative Rate) was chosen as the secondary evaluation metric,
measuring the model’s ability to correctly identify truly safe
orders and avoid unnecessary pharmacist interventions.

To balance these considerations, a custom weighted score
was developed:

Weighted Score = « X Recall + (1 — «v) x Specificity (1)

Given the higher priority of Recall, o was set to 0.7. This
weighted scoring approach provides a holistic and clinically
grounded evaluation, translating technical model perfor-
mance into a single metric for both business and clinical
stakeholders clarity.

4.2. Justification Quality

Beyond prediction accuracy, the quality of the model’s rea-
soning was evaluated to ensure interpretability and clinical
trustworthiness. Two complementary evaluation methods
were employed:

* Embedding-Based Similarity: Ground-truth
rationales authored by pharmacists and model-
generated rationales were embedded using the
all-mpnet-base-v2 Sentence Transformer
model. Cosine similarity was calculated between each
pair to measure semantic alignment. This automated,
quantitative assessment gauges how closely the
model’s explanations match expert reasoning.

* Human Expert Scoring:
A qualitative evaluation was conducted by a licensed
pharmacist to assess the interpretability of model-
generated justifications. Each explanation was re-
viewed and scored on a 1-4 scale across seven cri-
teria: logical coherence, correctness of reasoning, con-
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ciseness, clarity, relevance, duplication, and halluci-
nation. These dimensions were carefully chosen to
capture medical validity, clarity, and clinical utility
of the justifications beyond what can be measured by
embedding-based metric like cosine similarity. Given
the labor-intensive nature of this human evaluation pro-
cess, it was selectively applied to the outputs from the
highest-performing models, as determined by their co-
sine similarity scores. By incorporating expert review
in this targeted manner, the evaluation process remains
practical while still offering a nuanced lens into the
quality and safety of model reasoning in high-stakes
scenarios. Most evaluation dimensions are rated on a
scale from 1 to 4, where 4 represents the highest qual-
ity and 1 the lowest. However, for logical coherence
and hallucination, a binary scoring system is applied:
a score of 4 indicates acceptable output, while a score
of 1 denotes an unacceptable response. To enhance
interpretability, final scores were normalized on a scale
from O to 1. Average score of the 7 metrics was calcu-
lated as the final score for human evaluation. Table 3
lists the detailed explanation of the 7 metrics for hu-
man evaluation. The guideline framework is shown in
Appendix E.

Metrics Description

Logical Does the reasoning logically lead to

Coherence the final decision or recommendation
stated, regardless of medical correct-
ness?

Correctness Do the statements in the generated rea-
soning factually align with the medical
guideline?

Conciseness Linguistic efficiency and brevity - Is
the reasoning clear and concise with-
out unnecessary or filler content?

Clarity Is the reasoning process easy for a hu-
man to follow and understand?

Relevance Is the reasoning relevant to the true
reasoning thought process?

Duplication Is there any repeated statement in the
reasoning?

Hallucinations | Does the reasoning invent unsupported
facts or claims not present in the medi-
cal evidence?

Table 3. Human Evaluation Metrics

5. Discussion of Result

This project evaluated various methods for classifying medi-
cation orders as “safe” or “unsafe,” with a focus on assessing
prediction quality and justification quality.

5.1. Prediction Quality

The prediction quality of each model was evaluated using
recall, specificity, and a weighted recall-specificity score.

Model | Recall / Specificity
Base Model 0.2308 / 0.5833
Base Model with Monograph | 0.4615/0.8333
Fine-Tuned (temp = 1) 0.6923 / 0.6667
Fine-Tuned (temp = 0.5) 0.6923/0.7500
Qwen0.5b_RAG 0.0000 / 1.0000
GPT3.5.RAG 0.7692 / 0.5000
GPT40_RAG 0.6154/0.5833
Few-shot Prompt 0.9231/0.1667

Table 4. Recall/Specificity evaluations. (i) Base Model: DeepSeek-
R1-Distill-Llama-8B without monograph information; (ii) Base
Model with Monograph: Base Model with drug monograph infor-
mation in context; (iii) Fine-Tuned (temp = 1): Base Model with
Monograph fine-tuned with SFT using Unsloth at temperature 1;
(iv) Fine-Tuned (temp = 0.5): Fine-tuned model at temperature 0.5;
(v) Qwen0.5b with RAG; (vi) GPT-3.5 with RAG; (vii) GPT-40
with RAG; (viii) Direct Context Few-Shot Prompting.

Model | Weighted Score
Base Model 0.3365
Base w Monograph 0.5731
Fine-Tuned (temp = 1) 0.6846
Fine-Tuned (temp = 0.5) 0.7096
Qwen0.5b_RAG 0.3000
GPT3.5_RAG 0.6885
GPT40_RAG 0.6058
Few-Shot Prompt 0.6962

Table 5. Weighted Score Evaluations. (i) Base Model: DeepSeek-
R1-Distill-Llama-8B without monograph information; (ii) Base
Model w Monograph: Base Model with drug monograph infor-
mation in context; (iii) Fine-Tuned (temp = 1): Base Model w
Monograph with SFT using Unsloth, temperature = 1; (iv) Fine-
Tuned (temp = 0.5): Base Model w Monograph with SFT using
Unsloth, temperature = 0.5; (v) Qwen0.5b with RAG; (vi) GPT-3.5
with RAG; (vii) GPT-40 with RAG; (viii) Direct Context Few-Shot
Prompting.

From Table 4, we observed that the base model, both with
and without monograph information, performed poorly in
terms of recall. The purpose of including the base model
without monograph information was to assess DeepSeek-
R1-Distill-Llama-8B’s inherent ability to verify medication
orders without external drug references. This configuration
achieved a recall of 0.2308. Incorporating monograph infor-
mation increased recall to 0.4615, indicating that structured
drug knowledge helps the model better identify unsafe pre-
scriptions. The improvement in both recall and the weighted
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score (from 0.3365 to 0.5731, as shown in Table 5) suggests
that access to clinical context enhances the model’s decision-
making.

Fine-tuning the model using pharmacist-authored Chain-of-
Thought (CoT) rationales further improved performance.
The best results were observed at temperature 0.5, with
a recall of 0.6923 and specificity of 0.7500, leading to
a weighted score of 0.7096. Lowering the temperature
reduced randomness, producing more deterministic out-
puts—crucial for a safety-critical task. In contrast, tem-
perature 1.0 yielded more variable outputs and a slightly
lower weighted score (0.6846). These findings emphasize
the importance of both fine-tuning and careful hyperparam-
eter tuning to strike a balance between identifying unsafe
cases (recall) and minimizing false alarms (specificity).

We also explored a few-shot prompting strategy using full-
context prompts to leverage the model’s reasoning ability
without additional training. This approach achieved the
highest recall across all models (0.9231), demonstrating
strong sensitivity in identifying unsafe prescriptions. How-
ever, its specificity was the lowest (0.1667), reflecting a
tendency to over-predict unsafe cases. Despite this, the
method attained a competitive weighted score of 0.6962, as
shown in Table 4, positioning it close to the top-performing
fine-tuned configuration.

Lastly, RAG-based models such as Qwen0.5b_RAG,
GPT3.5_RAG, and GPT40_RAG showed mixed results.
Qwen0.5b_RAG had perfect specificity but zero recall, mak-
ing it unsuitable for detecting unsafe orders. GPT3.5_RAG
and GPT40_RAG offered better balance, but their specificity
still lagged behind fine-tuned configurations. Table 4 helps
to clearly rank these models based on the weighted score,
highlighting the trade-offs between high recall and reliable
specificity across modeling strategies.

5.2. Justification Quality

Justification quality was assessed using cosine similarity
between model-generated rationales and ground truth expla-
nations written by clinical experts. A higher cosine similar-
ity score indicates greater semantic alignment and, conse-
quently, better justification quality. Table 6 summarizes the
average cosine similarity achieved by each model configura-
tion.

5.2.1. EMBEDDING-BASED SIMILARITY

The base model achieved a cosine similarity of 0.7199, and
the inclusion of drug monograph information led to a notice-
able improvement to 0.7639. This suggests that structured
clinical references help the model generate more accurate
and relevant explanations, aligning more closely with expert
reasoning.

Model | Cosine Similarity
Base Model 0.7199
Base w Monograph 0.7639
Fine-Tuned (temp = 1) 0.7713
Fine-Tuned (temp = 0.5) 0.7319
Qwen0.5b_RAG 0.5957
GPT3.5_RAG 0.7376
GPT40_RAG 0.7337
Few-Shot Prompt 0.6575

Table 6. Cosine Similarity Evaluations. (i) Base Model: DeepSeek-
R1-Distill-Llama-8B without monograph information; (ii) Base
Model w Monograph: Base Model with drug monograph infor-
mation in context; (iii) Fine-Tuned (temp = 1): Base Model w
Monograph with SFT using Unsloth, temperature = 1; (iv) Fine-
Tuned (temp = 0.5): Base Model w Monograph with SFT using
Unsloth, temperature = 0.5; (v) Qwen0.5b with RAG; (vi) GPT-3.5
with RAG; (vii) GPT-40 with RAG:; (viii) Direct Context Few-Shot
Prompting.

Fine-tuning the model further improved performance. The
fine-tuned model with a temperature of 1 produced the high-
est similarity score (0.7713), indicating that this configura-
tion generated the most expert-aligned and coherent justifi-
cations. In contrast, lowering the temperature to 0.5 slightly
reduced justification quality (0.7319), possibly due to de-
creased generation flexibility. While deterministic outputs
are beneficial for consistency, they may also suppress the
nuanced reasoning required for high-quality clinical expla-
nations.

The RAG-based models showed varied performance. GPT-
3.5.-RAG and GPT-40_.RAG achieved moderate cosine
similarities of 0.7376 and 0.7337, respectively, while
Qwen0.5b_RAG lagged significantly behind at 0.5957.
These results suggest that although RAG approaches can
incorporate external knowledge effectively, they may not
consistently produce justifications that reflect expert-level
reasoning unless well-aligned with the downstream task.

The few-shot prompting method, which provides full con-
text without fine-tuning, achieved a cosine similarity of
0.6575. While this outperformed Qwen0.5b_RAG, it re-
mained lower than most other methods, reflecting chal-
lenges in guiding the model toward structured, expert-like
reasoning solely through prompting. Nevertheless, this re-
sult shows that prompting alone can produce moderately
aligned justifications when carefully constructed, even with-
out additional training.

Overall, these findings underscore the value of both con-
tent enrichment and targeted fine-tuning in improving the
alignment of generated justifications with expert clinical
reasoning.
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Logical coherence Correctness Conciseness
o Fine-Tuned (temp=1) 0.953 0.700 0.793 0.0
m Fine-Tuned (temp=0.5) 1.000 0.667 0.867 Clarity Relevance Duplication | Hallucination
u GPT3.5_RAG 1.000 0.667 0.600 M Fine-Tuned (temp=1) 0.903 0.730 0.890 0.950
u GPT4o_RAG 0.960 0.680 0.547 M Fine-Tuned (temp=0.5) 0.900 0.700 0.867 0.950
m Few-shot prompting 1.000 0.440 0.667 m GPT3.5_RAG 0.560 0.573 0.880 0.880
B GPT40_RAG 0.360 0.387 0.867 0.880
Figure 1. Average Human Scoring for Logical Coherence, Cor- M Few-shot prompting 0.720 0613 0.960 0.560

rectness and Conciseness per model. (i) Fine-Tuned (temp = 1):
DeepSeek-R1-Distill-Llama-8B with SFT using Unsloth, tempera-
ture = 1 (ii) Fine-Tuned (temp = 0.5): DeepSeek-R1-Distill-Llama-
8B with SFT using Unsloth, temperature = 0.5 (iii) GPT3.5 with
RAG (iv) GPT40 with RAG (v) Direct Context Few-Shot Prompt-
ing

5.2.2. HUMAN EVALUATION

Following human evaluation of the test cases, the average
scores across seven evaluation metrics were computed for
each model.

As shown in Figure 1 and Figure 2, the Fine-Tuned
(temp=0.5) model stands out overall, achieving the high-
est average score of 0.850, driven by perfect performance in
Logical Coherence and consistently strong results in Con-
ciseness, Clarity, Duplication, and Hallucination. This out-
come is aligned with expectations, as lower temperature
settings typically result in more deterministic and focused
outputs.

Between the base models, GPT-3.5 consistently outperforms
GPT-40 in most categories. Notably, GPT-40 demonstrated
a tendency toward verbosity, generating more nuanced but
less concise responses. Its lowest score was in Clarity
(0.360), where the model frequently included multiple as-
pects within its reasoning, not all of which were directly
relevant. If deploying GPT-40 in similar contexts, it would
be advisable to consider reducing the temperature setting or
applying stricter output constraints to improve conciseness
and clarity.

When comparing the two fine-tuned models, Fine-Tuned
(temp=1) performed well, with Logical Coherence (0.952)
and Hallucination Control (0.950) on par with the Fine-
Tuned (temp=0.5) model. However, it trailed slightly in
Clarity (0.900) and Conciseness (0.794 versus 0.867). These
results suggest that lowering the temperature enhanced gen-
eration consistency without compromising correctness or
hallucination control.

Figure 2. Average Human Scoring for Clarity, Relevance, Dupli-
cation and Hallucination per model. (i) Fine-Tuned (temp = 1):
DeepSeek-R1-Distill-Llama-8B with SFT using Unsloth, tempera-
ture = 1 (ii) Fine-Tuned (temp = 0.5): DeepSeek-R1-Distill-Llama-
8B with SFT using Unsloth, temperature = 0.5 (iii) GPT3.5 with
RAG (iv) GPT40 with RAG (v) Direct Context Few-Shot Prompt-
ing

Few-shot prompting model outperformed the rest on Dupli-
cation(0.960), while it perform worst in terms of Hallucina-
tion (0.560) and Correctness (0.440).

Across all models, Logical Coherence scores were consis-
tently high, indicating that this dimension is less sensitive
to temperature adjustments or model type in this evalua-
tion setup. Correctness scores were moderately consistent
(0.67-0.70), suggesting that while models effectively avoid
hallucinations, minor factual inaccuracies persist. Both
Duplication and Hallucination Control demonstrated sta-
ble performance across models, reflecting effective prompt
engineering.

However, an important limitation was identified in both
Fine-Tuned (temp=1) and Fine-Tuned (temp=0.5) models.
In certain cases, these models provided a final decision
and recommended action without accompanying reason-
ing. This indicates a potential shortcoming in the models’
ability to transparently justify their outputs, which may un-
dermine interpretability and trustworthiness in high-stakes
or decision-critical applications. To address this, it is recom-
mended to revise both the model prompts and training data
to explicitly enforce structured reasoning prior to presenting
final decisions. This would ensure that each recommenda-
tion is consistently supported by clear, stepwise justification.

Additional observations and improvement areas from human
evaluation:

* Hallucination: In Order 45, Fine-Tuned (temp=1) in-
correctly assumed a male patient was pregnant and
provided reasoning based on this error.
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e Incomplete Reasoning: In certain instances, Fine-
Tuned (temp=1) generalized conclusions about safety
risks without explicitly detailing the underlying ratio-
nale, opting instead to list medication usage and patient
conditions.

* Incoherence: For Order 34, a logical inconsistency
was observed where an issue flagged in the reasoning
was not reflected in the final decision.

* Under-dosing Detection: A recurring weakness across
all four models was the failure to identify under-dosing
cases, highlighting a priority area for future iterations.

¢ Ambiguous Justification: In Order 26, Fine-Tuned
(temp=0.5) presented non-committal reasoning, citing
either insufficient information or inappropriate dosing
without clarifying which applied, thus offering little
actionable insight.

Overall, while the fine-tuned models demonstrate substantial
improvements over base models, particularly at lower tem-
perature settings, targeted refinements in prompt structure,
reasoning requirements, and specific clinical safety checks
(e.g., under-dosing detection) will be critical to achieving
reliable, interpretable decision support.

5.3. Time taken for inference

The time taken for inference for each medication order in
the testing dataset is recorded across all 3 approaches (RAG,
Few-shot prompting, SFT). The average time taken is shown
in Table 7.

Model Avg inference time per
order (seconds)

Fine-Tuned (temp = 1) 79.29

Fine-Tuned (temp = 0.5) | 43.74

Qwen0.5b_RAG 7.76

GPT3.5 RAG 5.30

GPT40_ RAG 10.33

Few-Shot Prompt 12.60

Table 7. Average inference time per medication order per model.
(1) Fine-Tuned (temp = 1): DeepSeek-R1-Distill-Llama-8B with
Monograph and SFT using Unsloth, temperature = 1; (ii) Fine-
Tuned (temp = 0.5): DeepSeek-R1-Distill-Llama-8B with Mono-
graph and SFT using Unsloth, temperature = 0.5; (iii) Qwen0.5b
with RAG; (iv) GPT-3.5 with RAG; (v) GPT-40 with RAG; (vi)
Direct Context Few-Shot Prompting.

A higher temperature setting (e.g., 1.0) encourages more
diverse output sampling, which increases token generation
time and often results in more verbose responses. Con-
sequently, the average inference time for the Fine-Tuned

model at temperature 1 exceeded one minute per medica-
tion order, rendering the approach impractical for real-time
clinical use. Lowering the temperature allowed the model
to produce more focused and concise outputs, thereby im-
proving response time. However, despite this improve-
ment, inference remained slower than retrieval-based or
API-hosted methods due to the large size of the fine-tuned
model—DeepSeek-R1-Distill-Llama-8B—and the computa-
tional overhead of running it locally, even at 4-bit precision.
In contrast, Retrieval-Augmented Generation (RAG) ap-
proaches using hosted models like GPT-3.5 and GPT-40
demonstrated the fastest inference times. This performance
advantage stemmed from more efficient prompt construc-
tion, shorter input lengths enabled by targeted retrieval, and
the use of highly optimized infrastructure maintained by
OpenAlL

Interestingly, direct few-shot prompting with commercial
GPT models also outperformed locally fine-tuned inference
in terms of speed. These API-hosted models benefit from
hardware acceleration, dynamic batching, and other system-
level optimizations that reduce latency. Although they do
not offer the same level of control or customization as su-
pervised fine-tuning, they provided quick and consistent
responses suitable for prototyping and low-latency deploy-
ment. Model size also clearly influenced inference per-
formance: smaller models like Qwen(.5b yielded faster
results, albeit with a potential tradeoff in reasoning depth.
Ultimately, the evaluation revealed a fundamental trade-
off between interpretability, responsiveness, and scalabil-
ity—highlighting the importance of aligning model architec-
ture and deployment strategy with clinical and operational
requirements.

5.4. Finetuning or RAG

From the overall performance of the evaluated models, we
can postulate several reasons why fine-tuning outperforms
RAG in this task.

RAG models fundamentally depend on retrieval quality. In
RAG, the model first retrieves external documents (e.g., sec-
tions of the drug monograph) and then generates a response
based on them. If the retrieved chunks are not perfectly rel-
evant or precisely matched to the patient’s clinical context,
the model tends to generate weaker or more generic explana-
tions. Retrieval errors or omissions in fine-grained clinical
details can severely limit reasoning depth, even when the
base model is strong.

In contrast, fine-tuned models are explicitly trained on exam-
ples demonstrating how to reason about patient-medication
safety, using pharmacist-style clinical justifications. This
training not only imparts factual knowledge but also teaches
the structure, prioritization, and language style expected
in clinical settings. Fine-tuning thus enables the model to
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internalize both what to say and how to say it — something
RAG alone cannot achieve unless retrieval and generation
are perfectly optimized together, which is challenging in
practice.

Moreover, fine-tuned models integrate patient information
and drug properties into a cohesive reasoning chain, allow-
ing them to generate more organically adapted and case-
specific outputs. By comparison, RAG-based reasoning of-
ten feels “stitched together” — retrieved chunks are treated
more independently, resulting in less fluid, less patient-
tailored justifications.

Finally, the model size matters. Smaller models like Qwen-
0.5B have limited reasoning capacity compared to larger
fine-tuned models such as the 8B DeepSeek-R1. Even when
relevant documents are retrieved, smaller models may lack
the capacity to deeply synthesize the facts into strong, clini-
cally coherent justifications.

Overall, these factors explain why fine-tuning, particularly
when aligned with clinical Chain-of-Thought supervision,
edges out RAG for medication safety verification tasks in
our experiments.

6. Limitations and Future Work
6.1. Small Dataset Size

One key limitation of this project is the small dataset size
used for both model training and evaluation. The set of
50 medication orders, while curated to cover diverse safety
issues, is insufficient to capture the full complexity and
variability of real-world prescribing scenarios. This con-
strains the generalizability of the findings and limits the
statistical significance of performance metrics. Future work
could focus on expanding the dataset through collabora-
tion with healthcare institutions or leveraging anonymized
prescription datasets to enable more robust fine-tuning and
evaluation.

6.2. Limited Expert Justifications

Another limitation lies in the use of single-expert ground
truth justifications for assessing explanation quality. While
these justifications provide a clinically sound benchmark,
they reflect the reasoning of one individual and may not ac-
count for the range of valid perspectives that exist in clinical
practice. Additionally, the cosine similarity metric, though
useful for measuring semantic alignment, may not capture
more nuanced aspects such as clinical correctness, contex-
tual clarity, or hallucinated content. To address this, future
work could involve multi-expert annotations and a more
comprehensive human evaluation rubric to better reflect the
interpretability and trustworthiness of model outputs.
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6.3. Potential for Human-in-the-Loop Feedback
Reinforcement Learning

Incorporating human-in-the-loop feedback offers a promis-
ing pathway to enhance model performance. By involving
medical professionals to systematically review and anno-
tate outputs — flagging deficiencies in justification, reason-
ing clarity, or safety considerations — the fine-tuning pro-
cess can be iteratively refined. This approach would align
model outputs more closely with clinical standards, improv-
ing reliability and trust. However, the implementation of
such feedback-driven reinforcement learning is resource-
intensive and may pose significant operational challenges.

7. Conclusion

In conclusion, while supervised fine-tuning showed the most
promising performance in reasoning accuracy, its scalabil-
ity is limited. The model was trained on only 25 exam-
ples, raising concerns about overfitting and generalizabil-
ity. Additionally, generating Chain-of-Thought rationales
is labor-intensive, slowing data expansion. The current so-
lution is not ready for clinical deployment, where even a
single false negative—i.e., an unsafe order misclassified as
safe—could result in significant patient harm. Future work
should focus on scaling data collection, enhancing the ro-
bustness of supervised models, and further optimizing the
Retrieval-Augmented Generation (RAG) pipeline to balance
performance, safety, and practicality for clinical adoption.
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Appendix

A. Sample processed Patient Information and Medication Order

Patient is a 71-year-old female, height 1.56 m and weight 51 kg. Latest heart rate is 92 bpm. Latest systolic blood pressure is
113. Patient has a past medical history of Parkinson’s disease, Type 2 Diabetes Mellitus, and Stable Ischemic Heart Disease.
Currently, the patient is admitted for Vertigo and Gastroesophageal Reflux Disease.

Patient is also taking the following medications: oral Glipizide 15 mg twice daily before meals, oral Clopidogrel 75 mg
every morning, oral Benserazide 25 mg / Levodopa 100 mg twice a day.

Patient has known allergy to: none.
Some recent lab results and reports are shown below:
White Blood Cell = 2.32 x10%/L
Haemoglobin = 11.3 g/dL

Platelet = 56.0 g/dL.

Creatinine Clearance = 61.0 mL/min
eGFR = 55.0 mL/min/1.73 m?
Sodium = 141 mmol/L

Potassium = 4.0 mmol/L
Magnesium = 0.8 mmol/L

Fasting Glucose = 7.1 mmol/L
HbAlc=6.5%

HDL = 0.5 mmol/L

LDL = 2.0 mmol/L

TG = 2.0 mmol/L.

Microbiology Report: none
Imaging Report (Chest X-ray): No significant lung consolidation, pleural effusion, or pneumothorax. Cardiomediastinal
contour unremarkable.

The doctor ordered oral Metoclopramide 10 mg three times a day.

B. Sample processed Drug Monograph Information

Drug Monography Information as below:

WARNING: TARDIVE DYSKINESIA Treatment with metoclopramide can cause tardive dyskinesia, a serious movement
disorder that is often irreversible. The risk of developing tardive dyskinesia increases with duration of treatment and total
cumulative dose. Metoclopramide therapy should be discontinued in patients who develop signs or symptoms of tardive
dyskinesia. There is no known treatment for tardive dyskinesia. In some patients, symptoms may lessen or resolve after
metoclopramide treatment is stopped. Treatment with metoclopramide for longer than 12 weeks should be avoided in all
but rare cases where therapeutic benefit is thought to outweigh the risk of developing tardive dyskinesia. See WARNINGS
DOSAGE AND ADMINISTRATION Therapy with metoclopramide oral solution should not exceed 12 weeks in duration.
For the Relief of Symptomatic Gastroesophageal Reflux Administer from 10 mg to 15 mg metoclopramide orally up to 4
times daily 30 minutes before each meal and at bedtime, depending upon symptoms being treated and clinical response
(see CLINICAL PHARMACOLOGY and INDICATIONS AND USAGE ). If symptoms occur only intermittently or at
specific times of the day, use of metoclopramide in single doses up to 20 mg prior to the provoking situation may be
preferred rather than continuous treatment. Occasionally, patients (such as elderly patients) who are more sensitive to the
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therapeutic or adverse effects of metoclopramide will require only 5 mg per dose. Experience with esophageal erosions and
ulcerations is limited, but healing has thus far been documented in one controlled trial using 4 times daily therapy at 15
mg/dose, and this regimen should be used when lesions are present, so long as it is tolerated (see ADVERSE REACTIONS
). Because of the poor correlation between symptoms and endoscopic appearance of the esophagus, therapy directed at
esophageal lesions is best guided by endoscopic evaluation. Therapy longer than 12 weeks has not been evaluated and
cannot be recommended. For the Relief of Symptoms Associated with Diabetic Gastroparesis (Diabetic Gastric Stasis)
Administer 10 mg of metoclopramide 30 minutes before each meal and at bedtime for two to eight weeks, depending upon
response and the likelihood of continued well-being upon drug discontinuation. The initial route of administration should
be determined by the severity of the presenting symptoms. If only the earliest manifestations of diabetic gastric stasis
are present, oral administration of metoclopramide may be initiated. However, if severe symptoms are present, therapy
should begin with metoclopramide injection (consult labeling of the injection prior to initiating parenteral administration).
Administration of metoclopramide injection up to 10 days maybe required before symptoms subside at which time oral
administration may be instituted. Since diabetic gastric stasis is frequently recurrent, metoclopramide therapy should
be reinstituted at the earliest manifestation. Use in Patients with Renal or Hepatic Impairment Since metoclopramide is
excreted principally through the kidneys, in those patients whose creatinine clearance is below 40 mL/min, therapy should
be initiated at approximately one-half the recommended dosage. Depending upon clinical efficacy and safety considerations,
the dosage may be increased or decreased as appropriate. See OVERDOSAGE section for information regarding dialysis.
Metoclopramide undergoes minimal hepatic metabolism, except for simple conjugation. Its safe use has been described
in patients with advanced liver disease whose renal function was normal. WARNINGS Mental depression has occurred
in patients with and without prior history of depression. Symptoms have ranged from mild to severe and have included
suicidal ideation and suicide. Metoclopramide should be given to patients with a prior history of depression only if the
expected benefits outweigh the potential risks. Extrapyramidal symptoms, manifested primarily as acute dystonic reactions,
occur in approximately 1 in 500 patients treated with the usual adult dosages of 30 to 40 mg/day of metoclopramide. These
usually are seen during the first 24 to 48 hours of treatment with metoclopramide, occur more frequently in pediatric patients
and adult patients less than 30 years of age and are even more frequent at the higher doses. These symptoms may include
involuntary movements of limbs and facial grimacing, torticollis, oculogyric crisis, rhythmic protrusion of tongue, bulbar
type of speech, trismus, or dystonic reactions resembling tetanus. Rarely, dystonic reactions may present as stridor and
dyspnea, possibly due to laryngospasm. If these symptoms should occur, inject 50 mg diphenhydramine hydrochloride
intramuscularly, and they usually will subside. Benztropine mesylate, 1 to 2 mg intramuscularly, may also be used to reverse
these reactions. Parkinsonian-like symptoms have occurred, more commonly within the first 6 months after beginning
treatment with metoclopramide, but occasionally after longer periods. These symptoms generally subside within 2 to 3
months following discontinuance of metoclopramide. Patients with preexisting Parkinsona€™s disease should be given
metoclopramide cautiously, if at all, since such patients may experience exacerbation of parkinsonian symptoms when taking
metoclopramide. Tardive Dyskinesia (see Boxed Warnings) Treatment with metoclopramide can cause tardive dyskinesia
(TD), a potentially irreversible and disfiguring disorder characterized by involuntary movements of the face, tongue, or
extremities. The risk of developing tardive dyskinesia increases with duration of treatment and the total cumulative dose. An
analysis of utilization patterns showed that about 20% of patients who used metoclopramide took it for longer than 12 weeks.
Treatment with metoclopramide for longer than the recommended 12 weeks should be avoided in all but rare cases where
therapeutic benefit is thought to outweigh the risk of developing TD. Although the risk of developing TD in the general
population may be increased among the elderly, women, and diabetics, it is not possible to predict which patients will develop
metoclopramide-induced TD. Both the risk of developing TD and the likelihood that TD will become irreversible increase
with duration of treatment and total cumulative dose. Metoclopramide should be discontinued in patients who develop signs
or symptoms of TD. There is no known effective treatment for established cases of TD, although in some patients, TD may
remit, partially or completely, within several weeks to months after metoclopramide is withdrawn. Metoclopramide itself
may suppress, or partially suppress, the signs of TD, thereby masking the underlying disease process. The effect of this
symptomatic suppression upon the long term course of TD is unknown. Therefore, metoclopramide should not be used for
the symptomatic control of TD. Neuroleptic Malignant Syndrome (NMS) There have been rare reports of an uncommon
but potentially fatal symptom complex sometimes referred to as Neuroleptic Malignant Syndrome (NMS) associated with
metoclopramide. Clinical manifestations of NMS include hyperthermia, muscle rigidity, altered consciousness, and evidence
of autonomic instability (irregular pulse or blood pressure, tachycardia, diaphoresis and cardiac arrhythmias). The diagnostic
evaluation of patients with this syndrome is complicated. In arriving at a diagnosis, it is important to identify cases where
the clinical presentation includes both serious medical illness (e.g., pneumonia, systemic infection, etc.) and untreated or
inadequately treated extrapyramidal signs and symptoms (EPS). Other important considerations in the differential diagnosis
include central anticholinergic toxicity, heat stroke, malignant hyperthermia, drug fever and primary central nervous system
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(CNS) pathology. The management of NMS should include 1) immediate discontinuation of metoclopramide and other
drugs not essential to concurrent therapy, 2) intensive symptomatic treatment and medical monitoring, and 3) treatment of
any concomitant serious medical problems for which specific treatments are available. Bromocriptine and dantrolene sodium
have been used in treatment of NMS, but their effectiveness have not been established (see ADVERSE REACTIONS ).

C. Sample RAG Prompt Template

Patient Profile:
Patient is a 31-year-old female, height 1.68m and weighs 49kg. Latest heart rate is 87 bpm. Latest systolic blood pressure is
119 mmHg. Patient has a past medical history of null. Currently admitted for Trigger Finger.

Patient is also taking the following medications: null.
Patient has known allergy to: tramadol.

Recent Laboratory Results:

White Blood Cell = 9.2 x10°%/L

* Haemoglobin = 12.5 g/dL

 Platelet = 56.0 g/dL.

¢ Creatinine Clearance = 80.0 mL/min
» ¢GFR = 64.0 mL/min/1.73m?

* Sodium = 140 mmol/L

* Potassium = 4.1 mmol/L

* Magnesium = 0.9 mmol/L

Microbiology Report: null
Imaging Report: null

Medication Order:
Oral tramadol hydrochloride 50mg two times a day.

Relevant Drug Information: (drug: TRAMADOL HYDROCHLORIDE _data) Tablets Once-Daily and 50 mg Tramadol IR
Tablets Every 6 Hours. Food Effects After a single dose administration of 200 mg tramadol hydrochloride extended-release
tablet with a high fat meal, the Cp,,x and AUC of tramadol decreased 28% and 16%, respectively, compared to fasting
conditions. Mean T max was increased by 3 hr (from 14 hr under fasting conditions to 17 hr under fed conditions). While
tramadol hydrochloride extended-release tablets may be taken without regard to food, it is recommended that it be taken in a
consistent manner [see Dosage and Administration ( 2.1 )]. Distribution The volume of distribution of tramadol was 2.6
and 2.9 L/kg in male and female subjects, respectively, following a 100 mg intravenous dose. The binding of tramadol to
human plasma proteins is approximately 20% and binding also appears to be independent of concentration up to 10 mcg/mL.
Saturation of plasma protein binding occurs only at concentrations outside the clinically relevant range.

(drug: TRAMADOL HYDROCHLORIDE _data) If concomitant use is warranted, carefully observe the patient, particularly
during treatment initiation and dose adjustment. Discontinue tramadol hydrochloride extended-release tablets if serotonin
syndrome is suspected.Selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors
(SNRIs), tricyclic antidepressants (TCAs), triptans, 5-HT3 receptor antagonists, drugs that affect the serotonin neurotransmit-
ter system (e.g., mirtazapine, trazodone, tramadol), certain muscle relaxants (i.e., cyclobenzaprine, metaxalone), monoamine
oxidase (MAO) inhibitors (those intended to treat psychiatric disorders and also others, such as linezolid and intravenous
methylene blue).
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(drug: TRAMADOL HYDROCHLORIDE _data) A total of 3108 patients were studied during trials conducted in the U.S.,
including four double-blind studies in patients with osteoarthritis and/or chronic low back pain and one open-label study in
patients with chronic non-malignant pain. A total of 901 patients were 65 years or older. The frequency of adverse reactions
generally increased with doses from 100 mg to 400 mg in the two pooled, twelve-week, randomized, double-blind, placebo-
controlled studies in patients with chronic non-malignant pain (see Table 1). The most common adverse reactions from
Table 1 occurring in > 10% and > 2 times the placebo rate of patients treated with tramadol hydrochloride extended-release
tablets were dizziness (not vertigo), nausea, constipation, headache, somnolence, flushing, pruritus, vomiting, insomnia, and
dry mouth.

(drug: TRAMADOL HYDROCHLORIDE _data) PACKAGE LABEL.PRINCIPAL DISPLAY PANEL 300 mg label NDC
47335-861-83 (Once Daily) Tramadol Hydrochloride Extended-release Tablets, USP CIV 300 mg The tablets should be
swallowed whole with liquid and not split, chewed, dissolved or crushed. PHARMACIST: Please dispense with Medication
Guide provided separately to each patient. Rx only 30 Tablets SUN PHARMA tramadol-label-300mg

(drug: TRAMADOL HYDROCHLORIDE _data) addiction, abuse, and misuse. Consider prescribing naloxone for the
emergency treatment of opioid overdose [see Dosage and Administration (2.2), Warnings and Precautions (5.2)]. Abuse or
misuse of tramadol hydrochloride extended-release tablets by cutting, breaking, chewing, crushing, snorting, or injecting the
dissolved product will result in the uncontrolled delivery of tramadol and can result in overdose and death [see Overdosage
(10)]. Opioids are sought for nonmedical use and are subject to diversion from legitimate prescribed use. Consider these
risks when prescribing or dispensing tramadol hydrochloride extended-release tablets. Strategies to reduce these risks
include prescribing the drug in the smallest appropriate quantity and advising the patient on careful storage of the drug
during the course of treatment and proper disposal of unused drug. Contact local state professional licensing board or
state-controlled substances authority for information on how to prevent and

(drug: TRAMADOL HYDROCHLORIDE _data) and possibly signs and symptoms of opioid withdrawal in patients who
had developed physical dependence to tramadol. Intervention: If concomitant use is necessary, consider dosage reduction
of tramadol hydrochloride extended-release tablets until stable drug effects are achieved. Inform patients and caregivers
of this potential interaction, educate them on the signs and symptoms of seizures, serotonin syndrome, and signs of
respiratory depression and sedation. If a CYP3A4 inhibitor is discontinued, consider increasing the tramadol hydrochloride
extended-release tablets dosage until stable drug effects are achieved and evaluate patients at frequent intervals for signs
and symptoms of opioid withdrawal. Examples Macrolide antibiotics (e.g., erythromycin), azole-antifungal agents (e.g.
ketoconazole), protease inhibitors (e.g., ritonavir) CYP3A4 Inducers Clinical Impact: The concomitant use of tramadol
hydrochloride extended-release tablets and CYP3A4 inducers can decrease the plasma

(drug: TRAMADOL HYDROCHLORIDE _data) from Other Opioids to Tramadol Hydrochloride Extended-Release Tablets
When tramadol hydrochloride extended-release tablets therapy is initiated, discontinue all other opioid analgesics other
than those used on an as needed basis for breakthrough pain when appropriate. 2.4 Titration and Maintenance of Therapy
Individually titrate tramadol hydrochloride extended-release tablets by 100 mg every five days to a dose that provides
adequate analgesia and minimizes adverse reactions. The maximum daily dose of tramadol hydrochloride extended-release
tablets is 300 mg per day. Continually reevaluate patients receiving tramadol hydrochloride extended-release tablets to
assess the maintenance of pain control, signs and symptoms of opioid withdrawal, and other adverse reactions as well
as to reassess for the development of addiction, abuse, or misuse [see Warnings and Precautions (5.1, 5.18)] . Frequent
communication is important among the prescriber, other members of the healthcare team, the

(drug: TRAMADOL HYDROCHLORIDE data) Pharmacokinetic Parameter Values (n=32) Tramadol M1 Metabolite
Pharmacokinetic Parameter Tramadol hydrochloride extended-release 200 mg Tablet Tramadol hydrochloride 50 mg Tablet
Tramadol hydrochloride extended-release 200 mg Tablet Tramadol hydrochloride 50 mg Tablet Once-Daily Every 6 Hours
Once-Daily Every 6 Hours AUC 0-24 (ng-h/mL) 5975 (34) 6613 (27) 1890 (25) 2095 (26) C max (ng/mL) 335 (35) 383 (21)
95 (24) 104 (24) C min (ng/mL) 187 (37) 228 (32) 69 (30) 82 (27) T max (h) 12 (27) 1.5 (42) 15 (27) 1.9 (57) % Fluctuation
61 (57) 59 (35) 34 (72) 26 (47)

AUC 0-24: Area Under the Curve in a 24-hour dosing interval; C max: Peak Concentration in a 24-hour dosing interval; C
min: Trough Concentration in a 24-hour dosing interval; T max: Time to Peak Concentration

Figure 1: Mean Steady-State Tramadol (a) and M1 (b) Plasma Concentrations on Day 8 Post Dose after Administration of
200 mg Tramadol Hydrochloride Extended-Release Tablets Once-Daily and 50 mg Tramadol IR Tablets Every 6 Hours.
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Question:
Is this medication order safe for the given patient profile? Provide reasons to support your answer.

D. Sample Pharmacist’s Chain-of-Thought for the order in Appendix A

Okay, so I’'m trying to figure out if the doctor’s order for metoclopramide is safe for this patient. Let me start by going
through all the information provided.

The patient is a 71-year-old woman with Parkinson’s disease, Type 2 Diabetes, and stable ischemic heart disease. She’s
currently admitted for vertigo and gastroesophageal reflux disease. Her medications include glipizide, clopidogrel, and
levodopa/benserazide. She has no known allergies.

She’s being treated for vertigo and GERD with metoclopramide 10mg three times a day.

Looking at the drug monograph, it mentioned that patients with preexisting Parkinson’s disease should be given meto-
clopramide cautiously, if at all, since such patients may experience exacerbation of parkinsonian symptoms when taking
metoclopramide. This patient has Parkinson’s disease. This is a significant risk factor. This order is already appearing to be
not safe.

Looking at her lab results: her eGFR is 55, which is just above the threshold for renal impairment (usually 60 or above is
okay, so 55 might be a bit low but not necessarily problematic yet). Her sodium is 141, which is within normal range. Her
potassium is 4.0, which is within normal range. Magnesium is 0.8, which seems normal.

Her fasting glucose is 7.1, and HbA1C is 6.5%, which are both within target range for diabetes management. Her cholesterol
levels are normal as well.

The drug monography mentioned that treatment with metoclopramide can cause tardive dyskinesia. This risk increases with
duration of treatment and total dose. The warning says to avoid using it for longer than 12 weeks unless absolutely necessary.
Let me see if this is relevant to the patient. Here, the patient is being treated for vertigo and GERD. These diagnosis are
usually acute in nature. Will the patient be on metoclopramide for 12 weeks? For an acute diagnosis, I don’t think the
patient will be on long term metoclopramide. I am assuming metoclopramide is newly initiated.

Also, the patient’s age is a factor. The elderly are more prone to developing tardive dyskinesia, and the risk increases with
age. Her age is 71, which is quite advanced, so this adds another layer of concern.

The patient’s current issue of vertigo and GERD makes metoclopramide a reasonable treatment, but the risk of worsening
Parkinsonism symptoms and tardive dyskinesia is significant, especially given her age and history of Parkinson’s disease.

In conclusion, the risk of metoclopramide significantly outweighs the benefit due to the patient’s medical history of
Parkinson’s disease and age. Use should be avoided in patients with Parkinson disease and other patients being treated with
antiparkinsonian drugs.

E. Human Evaluation Guideline

Below is a guideline for human evaluation, designed to minimize subjectivity in scoring. Most evaluation dimensions are
rated on a scale from 1 to 4, where 4 represents the highest quality and 1 the lowest. However, for logical coherence and
hallucination, a binary scoring system is applied: a score of 4 indicates acceptable output, while a score of 1 denotes an
unacceptable response.

1. Logical coherence: Does the reasoning logically lead to the final decision or recommendation stated regardless of medical
correctness? Score 4: Reasoning logically supports and aligns with the final answer; Score 1: Reasoning contradicts or fails
to justify the final answer

2.Correctness of reasoning: Do the statements in the generated reasoning factually align with the medical guideline? Score
4: Fully align without any mistake; Score 3: Minor misalignment but main idea still the same; Score 2: Major misalignment
but some part is correct; Score 1: Totally incorrect

3. Conciseness: Linguistic efficiency and brevity - Is the reason clear and concise without unnecessary or filler content?
Score 4: The reasoning is clear, concise and meaningful, and free of generic statements; Score 3: Minor parts include
generic statements or filler content without obscuring the decision; Score 2: Noticeable part of the reason is generic or filler,
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but key conclusion remains visible; Score 1: The major part or entire statement is generic or unnecessary, drowning the
critical information

4.Clarity: Is the reasoning process easy for human to follow and understand? Score 4: Flow is very easy to follow; Score 3:
Generally understandable but may require minor re-reading for complex parts; Score 2: Require significant effort to read;
Score 1: The flow is not easy to follow and unclear

5.Relevant: Is the reasoning relevant to the true reasoning thought process? Score 4: The entire reasoning addresses the
patient and medication-specific risk with precise evidence; Score 3: reasoning covers key factors but some overgeneralization;
Score 2: Some parts address the patient and medication but key factors are ignored; Score 1: The reasoning is unrelated to
the patient condition or medication

6.Duplication: Is there any repeated statement in the reasoning? Score 4: Zero repetition; every sentence adds unique value;
Score 3: Minor repetition (single restatement for emphasis); Score 2: Core argument repeated >2 times without progression;
Score 1: Excessive copy-paste or circular reasoning

7.Hallucinations: Does the reasoning invent unsupported facts or claims not present in the monograph or known medical
evidence? Score 4: No hallucinations — all statements evidence-based; Score 1: Contains hallucinated or fabricated clinical
facts
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