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      Abstract 

Diabetic retinopathy (DR) is a leading cause of 
preventable blindness, requiring early detection 
for timely intervention. This study presents 
DeepSight, an automated screening system 
using machine learning to classify DR severity 
levels from retinal fundus images. Multiple 
modeling approaches were explored and 
evaluated, including end-to-end CNN models, 
hybrid feature extraction with traditional 
classifiers, and Vision Transformers (ViT). The 
pre-trained ViT model demonstrated the best 
performance, achieving 82% accuracy, 72% 
Kappa, and a ROC AUC of 98.9% for multi-
class classification, and 96.55% accuracy with 
96.06% recall for binary DR detection. To 
enhance interpretability, visual explanations 
(attention heatmaps) and natural language 
explanations via LLM integration (GPT-4o) 
were incorporated. Finally, a lightweight Flask-
based web application was developed to 
support practical deployment and informed 
clinical decision-making. 

The code for this project can be found on 
Github here: GitHub Link 

1.  Introduction 

Diabetes is becoming an increasingly serious global health 
issue, with the number of people affected rising from 200 
million in 1990 to 830 million in 2022 (WHO, 2023). 
Complications due to the disease are becoming major 
health issues that require effective health interventions for 
prevention and treatment. A specific microvascular 
complication of diabetes is Diabetic Retinopathy (DR). DR 
is a severe complication of diabetes and a leading cause of 
preventable blindness worldwide, affecting an estimated 
103 million patients worldwide (Teo et al., 2021). Early 
detection and timely treatment of DR can help to 
significantly reduce the risk of vision impairment. 
However, manual screening by ophthalmologists is labor-
intensive, time-consuming and subject to human error. 
This is especially so in regions with limited access to 
specialized healthcare professionals. 

Convolutional Neural Networks (CNNs), a branch of deep 
learning, have an impressive record for applications in 

image analysis and interpretation, including medical 
imaging (Pratt et al., 2016). Based on past research, in 
general, the CNNs architecture is created by having many 
filters in one layer of Neural Network (width), deeper 
layers (depth), and greater resolution of input image to 
have better performance, such as Xception, DenseNet-201, 
ResNet-152, VGG-19, and NASNet-Large architecture. 
Among them, DenseNet stands out for its use of dense 
connections between layers, which promote feature reuse 
and alleviate the vanishing gradient problem. While scaling 
CNNs across these three dimensions can enhance accuracy, 
it often requires manual tuning, which may lead to 
inefficiencies. EfficientNet addresses this by employing a 
compound scaling method that uniformly scales depth, 
width, and resolution using a constant aspect ratio, leading 
to more balanced and efficient model performance (Tan et 
al., 2019). 

The aim of this research is to create a classification method 
of diabetic retinopathy as an early detection system. This 
research utilizes a resized and filtered version of the dataset 
consisting of 3662 labelled images of which the original 
version of dataset is provided by the Asia Pacific Tele-
Ophthalmology Society (APTOS, 2019). This research 
explores two different approaches. The first approach uses 
deep learning end-to-end, where architectures such as 
EfficientNet and DenseNet are employed to both extract 
features and directly classify images. The second approach 
leverages these deep learning models solely for feature 
extraction, followed by traditional machine learning 
classifiers—Support Vector Machine (SVM), Random 
Forest, and XGBoost—for the classification task. The third 
approach enhances the second by applying the Synthetic 
Minority Oversampling Technique (SMOTE) to address 
class imbalance before classification. Lastly, the fourth 
approach using Vision Transformer (ViT) model for end-
to-end image classification. This paper details the 
methodologies and compares the performance of these 
approaches in providing a practical solution for automated 
retinal screening. 

2.  Fundamentals 

2.1  EfficientNet 

EfficientNet employs a principled compound scaling 
method to jointly expand network depth, width, and input 
resolution, resulting in superior accuracy-efficiency trade-
offs compared to conventional convolutional architectures 

https://github.com/yunika5699/BT5153-Group06-DiabeticRetinopathyClassification
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(Tan & Le, 2019). Its architecture integrates mobile 
inverted bottleneck convolution layers and squeeze-and-
excitation modules, which facilitate rich, multi-scale 
feature extraction while maintaining a compact parameter 
footprint. Although originally evaluated on general image 
recognition benchmarks, EfficientNet’s architectural 
efficiency makes it well-suited for resource-constrained 
medical imaging tasks. 

2.2  DenseNet 

DenseNet introduces a hallmark dense connectivity pattern 
in which each layer receives inputs from all preceding 
layers, thereby strengthening gradient propagation, 
encouraging feature reuse, and reducing parameter counts 
(Huang et al., 2017). Its transition layers help regulate 
model complexity. While DenseNet was initially validated 
on standard benchmarks, its efficient architecture can be 
helpful in capturing both fine vessel structures and broader 
lesion patterns in retinal images. 

2.3  Vision Transformers 

The Vision Transformer (ViT) reimagines image 
classification by partitioning input images into fixed-size 
patches, embedding them as tokens with positional 
encodings, and processing these through multi-head self-
attention and feed-forward layers (Dosovitskiy et al., 
2021). A dedicated classification token aggregates global 
contextual information, which can be critical for 
identifying distributed features such as microaneurysms or 
hemorrhages. Though ViT requires substantial pretraining 
on large-scale datasets to generalize effectively, its fine-
tuned variants have shown promise as global feature 
extractors in specialized domains, including retinal disease 
detection. 

2.4  Extreme Gradient Boosting Trees 

Extreme Gradient Boosting (XGBoost) is an efficient, 
scalable tree-boosting algorithm that builds sequential trees 
to minimize a regularized objective function via second-
order gradient descent (Chen & Guestrin, 2016). With 
built-in L1/L2 regularization, histogram-based split 
finding, and support for out-of-core computation, XGBoost 
efficiently handles high-dimensional deep-learning–
derived features. When applied in a hybrid pipeline, 
XGBoost serves as a strong second-stage classifier that 
captures nonlinear interactions in CNN-extracted 
embeddings from retinal scans. 

2.5  Random Forest 

Random Forest is an ensemble learning method that 
constructs multiple decision trees on bootstrap samples 
while injecting randomness at each split by selecting from 

random feature subsets (Breiman, 2001). This mechanism 
improves generalization and reduces overfitting. When 
using features extracted from EfficientNet or DenseNet, 
Random Forest provides not only robust classification 
performance but also interpretable feature importance 
metrics and out-of-bag error estimates, supporting practical 
model validation on limited ophthalmic datasets. 

2.6  Support Vector Machine 

Support Vector Machine (SVM) aims to find the 
hyperplane that maximizes the margin between classes in 
a high-dimensional feature space (Cortes & Vapnik, 1995). 
By applying kernel functions—such as the radial basis 
function—SVM can capture complex decision boundaries 
that arise in transformed CNN feature vectors. The soft-
margin formulation balances margin maximization with 
misclassification penalties, making SVM particularly 
effective in small-to-moderate-sized datasets such as 
APTOS, where generalization and interpretability are key. 

2.7  Gray Wolf Optimizer  

The Gray Wolf Optimizer (GWO) is a nature-inspired 
metaheuristic that mimics the leadership hierarchy and 
hunting behavior of grey wolves to guide the search for 
optimal solutions (Mirjalili et al., 2014). Using the 
positions of α, β, and δ wolves to direct exploration, GWO 
balances global and local search phases through a dynamic 
control coefficient. Although the original paper focused on 
mathematical and engineering optimization tasks, GWO’s 
simplicity and minimal tuning make it a practical choice 
for hyperparameter optimization in deep learning 
pipelines, including those used for retinal image analysis. 

2.8  Cohen Kappa Score 

To assess inter-rater agreement beyond chance, Cohen’s 
Kappa Score provides a robust statistical measure that 
quantifies the degree of concordance between two 
categorical raters while correcting for expected agreement 
due to randomness (Cohen, 1960). In classification tasks—
particularly imbalanced or ordinal problems like diabetic 
retinopathy severity prediction—accuracy alone can be 
misleading, as it does not penalize chance-level 
predictions. Kappa addresses this by comparing the 
observed accuracy to the accuracy expected by random 
assignment, yielding a value between –1 and 1, where 1 
denotes perfect agreement, 0 indicates chance-level 
agreement, and negative values reflect systematic 
disagreement. In our pipeline, Kappa is used to evaluate 
model consistency with human expert labels, offering a 
more nuanced reflection of classification reliability than 
raw accuracy—especially critical in medical imaging 
where class imbalance and ordinal progression are 
common. 
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3.  Research Experiment 

3.1  Data Description 

The dataset used in this study was obtained from the 
APTOS 2019 Blindness Detection competition, which 
consists of 3,662 retinal fundus images labeled according 
to the severity of diabetic retinopathy (APTOS, 2019). 
Each image is categorized into one of five classes: No DR, 
Mild, Moderate, Severe, or Proliferative DR. These labels 
represent progressive stages of the disease, where No DR 
indicates a healthy retina, Mild includes early 
microaneurysms, Moderate shows more extensive vascular 
damage, Severe presents widespread blood vessel 
blockage, and Proliferative DR—the most advanced 
stage—involves abnormal new vessel growth that may 
cause serious vision loss. 

To provide visual context, Figure 1 presents representative 
examples of each severity level from the dataset. 

Figure 1. Sample retinal fundus images representing each 

diabetic retinopathy severity level: (a) No DR, (b) Mild, (c) 

Moderate, (d) Severe, (e) Proliferative DR. 

As shown in Table 1 below, the dataset exhibits a highly 
imbalanced class distribution, with a significantly larger 
number of images labeled as No DR compared to other 
severity levels such as Severe and Proliferative DR. This 
class imbalance can hinder the model’s ability to learn 
equally from all categories, often leading to biased 
predictions that favor the majority class. 

Table 1. Distribution of Retinal Fundus Images Across Diabetic 

Retinopathy Severity Levels in the APTOS 2019 Dataset 

SEVERITY LEVEL NUMBER OF IMAGES 

NO DR 1805 

MILD 370 

MODERATE 999 

SEVERE 193 

PROLIFERATE 295 

 

3.2  Data Preprocessing 

As part of the data preprocessing pipeline, all images were 
passed through a filtering and resizing process to 
standardize their quality and dimensions. Each image was 
read from the original dataset, and a Gaussian blur was 
applied and blended with the original image. This filtering 
technique enhances local contrast, making subtle retinal 
features such as microaneurysms, hemorrhages, and 

neovascularization more visible, which is especially 
valuable for improving feature extraction in later stages.  

Following enhancement, each image was resized to 
224×224 pixels to ensure a consistent input size suitable 
for convolutional neural networks, which typically require 
fixed input dimensions. Standardizing image size and 
quality helps the model learn more effectively by reducing 
variation due to irrelevant visual noise and differing 
resolutions. The preprocessed images were then saved in a 
new directory with filenames indicating their 
corresponding class labels.  

To illustrate the effect of the preprocessing step, Figure 2 
presents a visual comparison between the original retinal 
images and their corresponding enhanced versions. As 
shown, the Gaussian filtering significantly improves the 
contrast and clarity of retinal features, making lesions and 
vascular abnormalities more distinguishable for 
downstream analysis. 

Figure 2. Preprocessed retinal fundus images representing each 

severity level of diabetic retinopathy: (a) No DR, (b) Mild, (c) 

Moderate, (d) Severe, and (e) Proliferative DR. All images have 

been enhanced using Gaussian filtering and resized to 224×224 

pixels to improve visual clarity and standardize input dimensions.  

Following preprocessing, the dataset was randomly split 
into training (70%), validation (15%), and testing (15%) 
sets to support model training, hyperparameter tuning, and 
unbiased performance evaluation, respectively. The 
preprocessed images were then saved into a new directory 
with filenames indicating their corresponding class labels. 

3.3  Modeling 

3.3.1 END-TO-END DEEP LEARNING CLASSIFICATION 

In this approach, DenseNet121 was selected as a base 
architecture for transfer learning due to its efficient feature 
reuse and gradient flow via dense connectivity, offering a 
strong balance between performance and computational 
cost. This makes it particularly effective on small to 
medium sized datasets by reducing overfitting. The 
training was done in 2 stages. 

In the initial stage, 1024-dimensional features were 
extracted from the frozen  DenseNet121 backbone and 
passed through a custom classification head with three 
dense layers (256 → 128 → 64), using Swish activation, 
strong L2 regularization (1e-2), batch normalization 
(momentum=0.95), and dropout (0.4, 0.3, 0.4). 

To address class imbalance, focal loss with class-specific 
alpha weights was used, supplemented by dynamic class 



DeepSight: Automated Diabetic Retinopathy Screening with Machine Learning    
 

 

reweighting. Weights were further manually boosted for 
underrepresented yet clinically important classes 
(moderate ×1.6, proliferative ×1.4, severe ×1.2). Label 
smoothing and a confidence penalty were added to improve 
generalization. 

RMSprop was chosen over Adam for stability in non-
stationary settings, combined with cosine annealing (1e-3 
→ 1e-5 over 50 epochs) and early stopping. 

In the second fine-tuning stage, the last 30 layers of 
DenseNet121 were unfrozen. A revised head (512 → 256) 
with ReLU activation, lighter L2 regularization (5e-5, 1e-
4), batch normalization, and dropout (0.3, 0.2) was 
employed. Fine-tuning used a lower learning rate (1e-5) 
with RMSprop (centered=True) and exponential decay 
(0.9^epoch) for gradual convergence. With this two-stage 
fine-tuning approach, it prevents the model from 
memorizing patterns in the training set and avoids 
overfitting. This could be seen from the comparable 
validation and test set evaluation metrics in Table 2. 

Table 2. Comparison of validation and test set evaluation metrics 

for end-to-end DenseNet121 model classification 

DATASET ACC KAPPA F1 ROC AUC 

VALIDATION 73.0% 59% 49.3% 85.8% 

TEST 75.1% 62.5% 54.0% 87.3% 

 

3.3.2 CNN FEATURE EXTRACTION WITH TRADITIONAL 

CLASSIFIERS 

This approach separates the feature extraction and 
classification stages. EfficientNetB3 is first used to extract 
high-dimensional feature vectors from the preprocessed 
retinal images. These extracted features are then fed into 
traditional machine learning classifiers, including Support 
Vector Machines (SVM), Random Forest, and XGBoost. 

To address the issue of class imbalance in the training set, 
we applied the Synthetic Minority Oversampling 
Technique (SMOTE), which generates synthetic samples 
for underrepresented classes. This allows the classifiers to 
better learn patterns across all severity levels, potentially 
improving performance on minority classes. Table 3 
presents the classification performance metrics before 
applying SMOTE, while Table 4 summarizes the results 
after SMOTE was applied. Both are for the test dataset. 
Comparing these tables allows us to assess the 
effectiveness of SMOTE in improving model performance, 
particularly for underrepresented categories such as severe 
and proliferative diabetic retinopathy. 

Table 3. Performance of Traditional Classifiers Before Applying 

SMOTE on EfficientNetB3-Extracted Features 

MODEL ACC KAPPA F1 ROC AUC 

SVM 70% 56% 53% 90% 

XGBOOST 75% 60% 48% 88% 

RF 71% 53% 32% 87% 

Table 4. Performance of Traditional Classifiers After Applying 

SMOTE on EfficientNetB3-Extracted Features 

MODEL ACC KAPPA F1 ROC AUC 

SVM 75% 61% 56% 90% 

XGBOOST 76% 63% 55% 90% 

RF 73% 58% 49% 88% 

Table 3 shows the performance of SVM, XGBoost, and 
Random Forest before applying SMOTE, while Table 4 
shows this after. From the results, we can see that SMOTE 
does improve the performance on almost every metric, for 
all 3 models.  

Overall, the best performing model was XGBoost after 
SMOTE. This model achieved 76% accuracy, and a ROC 
AUC of 90%. While not extremely accurate, this does 
mean that 76% of all patients are being correctly classified. 
However, it is worth noting that F1 score across the board 
was quite poor, with no model exceeding 60%. This is 
typically due to poor recall in the model. 

3.3.3  CNN FEATURES EXTRACTION WITH WRAPPER-
BASED FEATURE SELECTION 

In this approach, feature extraction is performed using both 
EfficientNet and DenseNet architectures. The extracted 
features from both models are concatenated to form a 
combined and more informative feature representation for 
each image. To reduce dimensionality and retain only the 
most relevant features, the Grey Wolf Optimizer (GWO) is 
applied as a wrapper-based. The selected features are then 
used as input to traditional machine learning classifiers, 
including Support Vector Machines (SVM), Random 
Forest, and XGBoost. This approach aims to eliminate 
redundant information and enhance both the efficiency and 
accuracy of the classification process. In the end there are 
987 features selected out of 2304 features.  

Table 5. Performance of Traditional Classifiers with Gray Wolf 

Optimizer as Wrapper-Based Feature Selection 

MODEL ACC KAPPA F1 ROC AUC 

SVM 80% 69% 65% 93% 

XGBOOST 79% 68% 48% 90% 

RF 77% 64% 50% 90% 

Based on Table 5, among the three, SVM achieved the 
highest overall performance, with an accuracy of 80%, a 
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Cohen’s Kappa score of 69%, an F1-score of 65%, and a 
ROC AUC of 93%. These results indicate that SVM not 
only predicted labels correctly but also maintained strong 
agreement with the ground truth and effectively balanced 
precision and recall across all classes. XGBoost, while 
yielding competitive results in terms of ROC AUC (90%) 
and Kappa (68%), demonstrated a notably lower F1-score 
(48%), suggesting a tendency to favor majority classes—
likely due to class imbalance in the dataset. Random Forest 
also maintained robust AUC and Kappa values (90% and 
64%, respectively), but its F1-score (50%) was lower than 
that of SVM, indicating less balanced predictive 
performance. Overall, these findings highlight SVM as the 
most effective model in this setup, benefiting from both the 
discriminative power of kernel-based learning and the 
compact feature subset identified by GWO. 

3.3.4 VISION TRANSFORMER FOR END-TO-END 

CLASSIFICATION 

In this final approach, rather than using convolutional 
layers, we apply self-attention mechanisms, treating parts 
of the image as tokens. We used a pre-trained ViT model 
(ViT-Base, Patch Size 16, 224px Input, ImageNet-21K 
pretrained) from Google, which was available via Hugging 
Face. Data in the training set was first pre-processed in the 
same way as before, and the model was then trained over 
10 epochs, with a learning rate of 0.0001, and optimizer 
Adam with weight decay (AdamW). 

It was found relatively quickly that the ViT model seemed 
prone to overfitting, as we monitored accuracy over both 
the training and validation loss during training. While 
training accuracy continued to climb, validation accuracy 
stayed the same and even started to perform worse after 5 
epochs. We hence made use of a checkpoint at epoch 5 and 
used the model which had been trained over 5 epochs as 
our final model. 

Figure 3. Training vs Validation Accuracy of ViT Model Over 10 

Epochs 

The model achieved an accuracy of 82%, recall of 59.5%, 
precision of 72.6%, F1 score of 61%, Kappa Score of 72% 
and ROC AUC of 98.9%. 

Figure 4. Confusion Matrix of ViT Model on Test Set 

3.4  Evaluation 

After experimenting with various modeling approaches, 
we selected the pre-trained ViT model as the final model. 
The decision was based on a comprehensive evaluation of 
key metrics across different modeling approaches. The 
following Table 6 compares the best performance results 
from each modeling approach across the key metrics, 
including accuracy, Cohen’s Kappa, F1-score, and ROC 
AUC.  

Table 6. Comparison of Best-Performing Results Across All 

Modeling Approaches 

MODEL ACC KAPP

A 

F1 ROC 

AU

C 

End-to-End 

DenseNet121 

75.1

% 

62.5

% 

54.0

% 

87.3% 

CNN Feature 

Extraction with 

Traditional 

Classifiers 

(XGBoost+SMOT

E) 

 

76% 63% 55% 90% 

CNN Features 

Extraction with 

Wrapper-Based 

Feature Selection 

(SVM) 

 

80% 69% 65% 93% 

End-to-End Vision 

Transformer 
82% 72% 61% 98.9% 
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Based on Table 6, the pre-trained ViT model shows 
superior performance with highest accuracy of 82%, 
Cohen’s Kappa of 72%, and ROC AUC of 98.9%. The 
results reflect that ViT model has strong agreement with 
the true labels and excellent ability in distinguishing 
between different diabetic retinopathy severity levels. 
Although the F1-score of ViT is slightly lower than the 
score from SVM with Gray Wolf Optimizer (61% to 65%), 
ViT’s overall strong performance still provides greater 
confidence for real-world clinical deployment. 

3.5  Discussion of Binary Classification 

Given that this model is intended to be deployed in a 
medical context, there is concern that even slight 
inaccuracy could lead to catastrophic results. If a patient 
who does have diabetic retinopathy is told they do not have 
it, this could result in lack of treatment and eventual 
deterioration of their sight. Hence, it is worth questioning 
whether 82% accuracy and a 0.72 kappa score is truly 
sufficient for such a use case. 

While we agree that 82% accuracy does leave much to be 
desired, we caution that this accuracy score is tied 
specifically to the multi-class classification, which 
indicates that 82% of the time, the model not only classifies 
whether a patient has Diabetic Retinopathy but can classify 
how severe their disease is. 

In a real-world context, patients will likely require medical 
intervention at any level of DR. Hence, if the disease 
classifies the patient as having moderate DR when in 
reality they have severe DR, the consequences are not as 
severe, as the patient would have to seek treatment in both 
cases, and human doctors will have sight over the scans and 
be able to follow up appropriately, regardless of the 
model’s prediction. 

To this extent, we find that while multi-class classification 
is good to have and can improve doctors’ workflow, the 
crucial role of the model lies in its binary classification 
ability (predicting whether a patient has DR or not). Hence, 
the suitability of the model to be deployed in a real-world 
use case should also be assessed on its binary classification 
ability. We hence reclabelled the output of the best 
performing model, ViT, such that all classes other than No 
DR were relabelled as 1, and No DR alone was labelled as 
0. 

The model performs well as a binary classification model, 
with an accuracy of 96.55%, precision of 97.1%, recall of 
96.06%, F1 Score of 96.58% and ROC AUC of 98.97%. 
The Kappa score was also 93.09%. 

In particular, we want to focus on the recall score, since 
recall is an important metric in a medical context. Recall 
measures the number of positive cases were correct 
identified as true positives. In other words, we are able to 

correctly identify 96.06% of patients who actually have 
DR. 

These metrics’ significant improvement over the multi-
class classification metrics provides assurance that the 
model is sufficiently reliable. Despite only classifying 82% 
of patients into the exact right class, we know that the 
model is still able to correctly identify almost all patients 
who are suffering from DR, such that they can receive 
medical intervention in a timely manner. 

Figure 5. ViT Model Confusion Matrix for DR Detection (Binary 

Classification) 

4.  Explainability and Deployment 

4.1  Grad-CAM and Attention Visualizations 

Having selected our model, we move on to methods to 
enhance the interpretability and practical usability of our 
system. Deep learning models such as Convolutional 
Neural Networks (CNNs) and Vision Transformers (ViTs) 
are inherently complex and often criticized as "black-box" 
models due to the difficulty in understanding how input 
features influence predictions. However, explainability is 
crucial in the medical industry, as it is important in 
supporting doctors’ clinical judgment and decision 
making. Explainability further provides safeguards against 
misclassification and increases trust among end-users by 
making the model’s reasoning accessible and accountable. 

To address this, we employ visual explanation techniques 
tailored to each model class. For CNNs, we use Gradient-
weighted Class Activation Mapping (Grad-CAM). This is 
a method that utilizes the gradients of the target class 
flowing into the last convolutional layer to generate a 
localization map. This highlights the regions of the input 
image that most strongly influence the output decision, 
offering insight into the spatial attention of the model. 

On the other hand, ViTs lack convolutional layers, and are 
hence unable to generate Grad-CAM visualizations. 
Instead, we utilize attention heatmaps which visualize the 
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attention weights associated with the final [CLS] token, or 
the classification token in transformer architectures. In 
other words, the heatmap shows which areas were most 
important in generating the given classification. 

4.2  Comparison Between Models 

Grad-CAM and Attention Heatmaps also allow us to make 
understandable comparisons between our models, as it 
provides some intuitive understanding of why certain 
models perform better than others, and provides insight 
into why some models are more prone to overfitting that 
others. 

In particular, we consider the best performing CNN, 
DenseNet121, against ViT. Below, we see how the the two 
different models pay attention to very different areas of the 
same image. DenseNet (left) saw the most activation over 
the left and right peripheral areas of the retina, while ViT 
(right) saw most attention in small portions near the bottom 
and middle of the retina image. 

Figure 6. Visual Comparison of Model Focus Areas: 

DenseNet121 Grad-CAM vs ViT Attention Heatmap 

These differences give us some intuition into why ViT 
might have performed better than DenseNet. ViT had more 
focused attention, as indicated by the smaller red areas, 
while more than half of the images saw high activation in 
DenseNet. Further, we obtain some insight into why ViT 
seemed to converge so quickly and tended to overfit the 
training set, since it tended to look at very small, specific 
areas. This might have allowed it to learn very specific 
details about the training set that could not be generalized 
to the validation or test set.  

4.3  Large Language Model (LLM) Integration 

While the visualization is helpful to direct attention to the 
most crucial parts of the retina, it may still not prove useful 
in cases where the user is not equipped to understand such 
heatmap visualizations, such as medical assistants or 
doctors with little experience with such deep learning 
models. 

To bridge this gap, we built a LangChain pipeline that 
passes the ViT attention map overlaid on the original 
image, to a Large Language Model (LLM). The LLM is 
then prompted to explain, in natural language, how specific 
regions of the image contributed to the classification. 

For this project, we used OpenAI’s GPT-4o, which 
supports both visual and textual inputs and produces 
human-readable explanations. Our pipeline passes the 
overlaid Grad-CAM image along with the model’s numeric 
prediction to GPT-4o, which is prompted to generate an 
explanation that relates the visual evidence to the model’s 
classification in a way that is accessible to users. An 
example of the LLM’s output for the image in 4.2 is 
produced below. 

The model predicted 'Mild' with a 
confidence of 63.0%. The attention 
heatmap overlaid on the retina image 
highlights specific areas that 
contributed most to this prediction. 
Here’s a breakdown of the key areas of 
interest:  
 
1. **Inferior Region**: The most 
prominent red area is located in the 
inferior part of the retina. This 
suggests significant attention was given 
here, possibly indicating early signs of 
mild abnormalities or changes that 
warrant further investigation.  
2. **Central Retina**: Several red spots 
are visible in the central region. These 
areas may show subtle changes or features 
that the model associates with a mild 
condition.  
3. **Temporal Side**: There is noticeable 
attention on the temporal side of the 
retina. This area should be examined for 
any early signs of mild pathology.  
4. **Superior Region**: Some attention is 
also given to the superior part of the 
retina, though less intense than the 
inferior region. It’s worth checking for 
any mild changes here as well.  
 
For follow-up, focus on these highlighted 
areas, especially the inferior region, to 
assess any early signs of retinal changes 
or abnormalities. Further clinical 
evaluation and imaging may be necessary 
to confirm the model's prediction and 
ensure accurate diagnosis and management. 
 

4.4  Deployment 

For deployment, a lightweight web application was 
developed using the Python Flask framework to provide an 
accessible and interactive interface for diabetic retinopathy 
detection. The application integrates the trained Vision 
Transformer (ViT) model, allowing users to upload retinal 
fundus images and receive real-time classification results. 
Flask was chosen for its simplicity, flexibility, and 
compatibility with Python-based machine learning 
workflows. The deployed system processes input images 
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through the ViT model on the backend and returns the 
predicted severity level to the user via a web interface. 

As shown in Figure 7, the output page presents the original 
retinal image alongside an attention map generated by the 
Vision Transformer (ViT) model. The attention map 
highlights the regions the model focused on when making 
its classification, providing visual cues that can be useful 
for clinical interpretation. Below the images, the predicted 
class label (e.g., No DR) is displayed along with the 
model’s confidence score. Additionally, a brief region-
based explanation generated by LLM is provided to guide 
users or medical professionals in understanding why 
certain areas were considered important. This feature 
supports more informed decision-making and bridges the 
gap between automated predictions and clinical insight. 

Figure 7. Sample Output Page of Web Application. It will show 

the original image, the attention map, and the explanation 

generated using OpenAI API (GPT-4o) 

5.  Limitations and Future Work 

5.1  Limitations 

Despite the promising outcomes, there are several 
limitations that we need to be aware of. One key limitation 
of this study is the dataset itself. As the dataset only has 
3662 images, which is not particularly large, it might raise 
concerns about whether the model performance would be 
consistent when it is being applied to diverse clinical 
settings with varied patient populations. Additionally, 
although we applied SMOTE to address class imbalance 
issues, severe and proliferate classes are still 
underrepresented. This could potentially limit the 
performance of the model when it generalizes to real-world 
scenarios. 

Another limitation relates to the model performance. 
Although we achieved a relatively good accuracy (82%) 
and a high ROC AUC (98.9%) in the final model, the F1 
score (61%), especially the recall (59.5%), reveals some 
concerns. The low recall indicates that the model misses 

identifying about 40% of patients who actually have 
diabetic retinopathy. In real-world medical screening, 
recall is very important because missing a diagnosis could 
lead to patients not receiving timely treatment and hence a 
very high cost. Moreover, the Cohen’s Kappa score of 72% 
shows that there is still a meaningful gap between perfect 
agreement and actual agreement. These metrics suggest 
that the model’s performance in correctly identifying all 
disease cases and severity still has room for improvement. 

Lastly, our final model ViT has a tendency to quickly 
overfit because it tends to memorize very small, overly 
specific details from the training data. Without robust 
regularization, this issue could reduce the effectiveness and 
ability to generalize on new unseen data in the real-world 
clinical scenarios. 

5.2  Future Work 

To overcome these limitations, future work should first 
focus on the dataset itself. It is important to collect more 
retinal fundus images, particularly those showing Mild, 
Moderate, Severe, and Proliferate DR, as it would enhance 
the model’s performance and generalizability to real-world 
clinical uses. Additionally, exploring more advanced data 
augmentation techniques like Generative Adversarial 
Networks (GANs) could potentially balance the class 
distribution better, solving the imbalance issue and making 
the model more robust. 

For the modeling part, future work could explore more 
hybrid approaches, such as combining convolutional 
neural networks and vision transformers. Since CNN 
performs quite well in detecting detailed, localized features 
from images, and ViT is good at capturing global contexts 
across the entire images, combining these two approaches 
might significantly boost the model classification 
performance. In addition, to reduce the overfitting in ViT, 
advanced regularization strategies or techniques 
specifically designed to deal with overfitting can be 
explored and applied. 

Furthermore, adding professional clinician feedback or 
relevant knowledge databases into the web application can 
refine the interpretability and explainability of the results 
by aligning visual explanations more closely with real-
world clinical reasoning, effectively improving the 
practical utility of the application.  

Lastly, future research could incorporate patient data 
beyond just the retinal images. For example, including 
biomarkers such as glucose level could potentially lead to 
more comprehensive predictions. This approach would not 
only help validate the model accuracy but also improve 
preventive healthcare interventions. 

6.  Conclusion 

This project successfully developed an automated diabetic 
retinopathy screening system, integrating powerful deep 
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learning architectures with traditional classifiers and 
explainability methods. Our experiments showed that 
while CNNs and hybrid pipelines delivered decent baseline 
results, the ViT outperformed other models in prediction 
accuracy, agreement with ground truth labels, as well as 
separability. Although the recall was moderate in multi-
class classification, binary classification performance was 
excellent, meeting the critical requirements of real-world 
medical screening contexts where missing positive cases 
must be minimized.  

By integrating visual interpretability techniques such as 
Attention Heatmap and natural language explanations 
generated by OpenAI’s GPT-4o, we bridged the gap 
between complex black-box model outputs and practical 
clinical understanding, promoting more informed decision-
making. Furthermore, we deployed a lightweight web 
application using the Flask framework and integrated the 
ViT model alongside attention heatmap and LLM-based 
explanations, allowing users to upload retinal fundus 
images and receive interpretable classification results. This 
application enhances practical accessibility for both end 
users and healthcare professionals.  

However, important limitations still remain, particularly 
regarding dataset size and class imbalance issues. Future 
work should focus on expanding the dataset, particularly 
for underrepresented classes. Directions such as hybrid 
CNN and ViT models, clinician feedback incorporation, 
and multimodal patient data integration could also be 
explored for improving model robustness and real-world 
utility. Overall, DeepSight demonstrates a significant step 
toward creating a more accurate, interpretable, and 
accessible AI-driven diabetic retinopathy screening 
system. 
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