DeepSight: Automated Diabetic Retinopathy Screening with Machine Learning

Abstract

Diabetic retinopathy (DR) is a leading cause of
preventable blindness, requiring early detection
for timely intervention. This study presents
DeepSight, an automated screening system
using machine learning to classify DR severity
levels from retinal fundus images. Multiple
modeling approaches were explored and
evaluated, including end-to-end CNN models,
hybrid feature extraction with traditional
classifiers, and Vision Transformers (ViT). The
pre-trained VIiT model demonstrated the best
performance, achieving 82% accuracy, 72%
Kappa, and a ROC AUC of 98.9% for multi-
class classification, and 96.55% accuracy with
96.06% recall for binary DR detection. To
enhance interpretability, visual explanations
(attention heatmaps) and natural language
explanations via LLM integration (GPT-40)
were incorporated. Finally, a lightweight Flask-
based web application was developed to
support practical deployment and informed
clinical decision-making.

The code for this project can be found on
Github here: GitHub Link

1. Introduction

Diabetes is becoming an increasingly serious global health
issue, with the number of people affected rising from 200
million in 1990 to 830 million in 2022 (WHO, 2023).
Complications due to the disease are becoming major
health issues that require effective health interventions for
prevention and treatment. A specific microvascular
complication of diabetes is Diabetic Retinopathy (DR). DR
is a severe complication of diabetes and a leading cause of
preventable blindness worldwide, affecting an estimated
103 million patients worldwide (Teo et al., 2021). Early
detection and timely treatment of DR can help to
significantly reduce the risk of vision impairment.
However, manual screening by ophthalmologists is labor-
intensive, time-consuming and subject to human error.
This is especially so in regions with limited access to
specialized healthcare professionals.

Convolutional Neural Networks (CNNSs), a branch of deep
learning, have an impressive record for applications in

image analysis and interpretation, including medical
imaging (Pratt et al., 2016). Based on past research, in
general, the CNNs architecture is created by having many
filters in one layer of Neural Network (width), deeper
layers (depth), and greater resolution of input image to
have better performance, such as Xception, DenseNet-201,
ResNet-152, VGG-19, and NASNet-Large architecture.
Among them, DenseNet stands out for its use of dense
connections between layers, which promote feature reuse
and alleviate the vanishing gradient problem. While scaling
CNNs across these three dimensions can enhance accuracy,
it often requires manual tuning, which may lead to
inefficiencies. EfficientNet addresses this by employing a
compound scaling method that uniformly scales depth,
width, and resolution using a constant aspect ratio, leading
to more balanced and efficient model performance (Tan et
al., 2019).

The aim of this research is to create a classification method
of diabetic retinopathy as an early detection system. This
research utilizes a resized and filtered version of the dataset
consisting of 3662 labelled images of which the original
version of dataset is provided by the Asia Pacific Tele-
Ophthalmology Society (APTQOS, 2019). This research
explores two different approaches. The first approach uses
deep learning end-to-end, where architectures such as
EfficientNet and DenseNet are employed to both extract
features and directly classify images. The second approach
leverages these deep learning models solely for feature
extraction, followed by traditional machine learning
classifiers—Support Vector Machine (SVM), Random
Forest, and XGBoost—for the classification task. The third
approach enhances the second by applying the Synthetic
Minority Oversampling Technique (SMOTE) to address
class imbalance before classification. Lastly, the fourth
approach using Vision Transformer (ViT) model for end-
to-end image classification. This paper details the
methodologies and compares the performance of these
approaches in providing a practical solution for automated
retinal screening.

2. Fundamentals

2.1 EfficientNet

EfficientNet employs a principled compound scaling
method to jointly expand network depth, width, and input
resolution, resulting in superior accuracy-efficiency trade-
offs compared to conventional convolutional architectures
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(Tan & Le, 2019). Its architecture integrates mobile
inverted bottleneck convolution layers and squeeze-and-
excitation modules, which facilitate rich, multi-scale
feature extraction while maintaining a compact parameter
footprint. Although originally evaluated on general image
recognition benchmarks, EfficientNet’s architectural
efficiency makes it well-suited for resource-constrained
medical imaging tasks.

2.2 DenseNet

DenseNet introduces a hallmark dense connectivity pattern
in which each layer receives inputs from all preceding
layers, thereby strengthening gradient propagation,
encouraging feature reuse, and reducing parameter counts
(Huang et al., 2017). Its transition layers help regulate
model complexity. While DenseNet was initially validated
on standard benchmarks, its efficient architecture can be
helpful in capturing both fine vessel structures and broader
lesion patterns in retinal images.

2.3 Vision Transformers

The Vision Transformer (ViT) reimagines image
classification by partitioning input images into fixed-size
patches, embedding them as tokens with positional
encodings, and processing these through multi-head self-
attention and feed-forward layers (Dosovitskiy et al.,
2021). A dedicated classification token aggregates global
contextual information, which can be critical for
identifying distributed features such as microaneurysms or
hemorrhages. Though ViT requires substantial pretraining
on large-scale datasets to generalize effectively, its fine-
tuned variants have shown promise as global feature
extractors in specialized domains, including retinal disease
detection.

2.4 Extreme Gradient Boosting Trees

Extreme Gradient Boosting (XGBoost) is an efficient,
scalable tree-boosting algorithm that builds sequential trees
to minimize a regularized objective function via second-
order gradient descent (Chen & Guestrin, 2016). With
built-in  L1/L2 regularization, histogram-based split
finding, and support for out-of-core computation, XGBoost
efficiently handles high-dimensional deep-learning—
derived features. When applied in a hybrid pipeline,
XGBoost serves as a strong second-stage classifier that
captures nonlinear interactions in CNN-extracted
embeddings from retinal scans.

2.5 Random Forest

Random Forest is an ensemble learning method that
constructs multiple decision trees on bootstrap samples
while injecting randomness at each split by selecting from

random feature subsets (Breiman, 2001). This mechanism
improves generalization and reduces overfitting. When
using features extracted from EfficientNet or DenseNet,
Random Forest provides not only robust classification
performance but also interpretable feature importance
metrics and out-of-bag error estimates, supporting practical
model validation on limited ophthalmic datasets.

2.6 Support Vector Machine

Support Vector Machine (SVM) aims to find the
hyperplane that maximizes the margin between classes in
a high-dimensional feature space (Cortes & Vapnik, 1995).
By applying kernel functions—such as the radial basis
function—SVM can capture complex decision boundaries
that arise in transformed CNN feature vectors. The soft-
margin formulation balances margin maximization with
misclassification penalties, making SVM particularly
effective in small-to-moderate-sized datasets such as
APTOS, where generalization and interpretability are key.

2.7 Gray Wolf Optimizer

The Gray Wolf Optimizer (GWO) is a nature-inspired
metaheuristic that mimics the leadership hierarchy and
hunting behavior of grey wolves to guide the search for
optimal solutions (Mirjalili et al., 2014). Using the
positions of a, B, and & wolves to direct exploration, GWO
balances global and local search phases through a dynamic
control coefficient. Although the original paper focused on
mathematical and engineering optimization tasks, GWQO’s
simplicity and minimal tuning make it a practical choice
for hyperparameter optimization in deep learning
pipelines, including those used for retinal image analysis.

2.8 Cohen Kappa Score

To assess inter-rater agreement beyond chance, Cohen’s
Kappa Score provides a robust statistical measure that
quantifies the degree of concordance between two
categorical raters while correcting for expected agreement
due to randomness (Cohen, 1960). In classification tasks—
particularly imbalanced or ordinal problems like diabetic
retinopathy severity prediction—accuracy alone can be
misleading, as it does not penalize chance-level
predictions. Kappa addresses this by comparing the
observed accuracy to the accuracy expected by random
assignment, yielding a value between -1 and 1, where 1
denotes perfect agreement, O indicates chance-level
agreement, and negative values reflect systematic
disagreement. In our pipeline, Kappa is used to evaluate
model consistency with human expert labels, offering a
more nuanced reflection of classification reliability than
raw accuracy—especially critical in medical imaging
where class imbalance and ordinal progression are
common.



DeepSight: Automated Diabetic Retinopathy Screening with Machine Learning

3. Research Experiment

3.1 Data Description

The dataset used in this study was obtained from the
APTOS 2019 Blindness Detection competition, which
consists of 3,662 retinal fundus images labeled according
to the severity of diabetic retinopathy (APTOS, 2019).
Each image is categorized into one of five classes: No DR,
Mild, Moderate, Severe, or Proliferative DR. These labels
represent progressive stages of the disease, where No DR
indicates a healthy retina, Mild includes early
microaneurysms, Moderate shows more extensive vascular
damage, Severe presents widespread blood vessel
blockage, and Proliferative DR—the most advanced
stage—involves abnormal new vessel growth that may
cause serious vision 1oss.

To provide visual context, Figure 1 presents representative
examples of each severity level from the dataset.

(a) (b) (c) (d)

(e)
Figure 1. Sample retinal fundus images representing each
diabetic retinopathy severity level: (a) No DR, (b) Mild, (c)
Moderate, (d) Severe, (e) Proliferative DR.

As shown in Table 1 below, the dataset exhibits a highly
imbalanced class distribution, with a significantly larger
number of images labeled as No DR compared to other
severity levels such as Severe and Proliferative DR. This
class imbalance can hinder the model’s ability to learn
equally from all categories, often leading to biased
predictions that favor the majority class.

Table 1. Distribution of Retinal Fundus Images Across Diabetic
Retinopathy Severity Levels in the APTOS 2019 Dataset

SEVERITY LEVEL NUMBER OF IMAGES

No DR 1805
MILD 370
MODERATE 999
SEVERE 193
PROLIFERATE 295

3.2 Data Preprocessing

As part of the data preprocessing pipeline, all images were
passed through a filtering and resizing process to
standardize their quality and dimensions. Each image was
read from the original dataset, and a Gaussian blur was
applied and blended with the original image. This filtering
technique enhances local contrast, making subtle retinal
features such as microaneurysms, hemorrhages, and

neovascularization more visible, which is especially
valuable for improving feature extraction in later stages.

Following enhancement, each image was resized to
2245224 pixels to ensure a consistent input size suitable
for convolutional neural networks, which typically require
fixed input dimensions. Standardizing image size and
quality helps the model learn more effectively by reducing
variation due to irrelevant visual noise and differing
resolutions. The preprocessed images were then saved in a
new directory with filenames indicating their
corresponding class labels.

To illustrate the effect of the preprocessing step, Figure 2
presents a visual comparison between the original retinal
images and their corresponding enhanced versions. As
shown, the Gaussian filtering significantly improves the
contrast and clarity of retinal features, making lesions and
vascular  abnormalities distinguishable  for
downstream analysis.

more
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Figure 2. Preprocessed retinal fundus images representing each
severity level of diabetic retinopathy: (a) No DR, (b) Mild, (c)
Moderate, (d) Severe, and (e) Proliferative DR. All images have
been enhanced using Gaussian filtering and resized to 224224
pixels to improve visual clarity and standardize input dimensions.

(b)

Following preprocessing, the dataset was randomly split
into training (70%), validation (15%), and testing (15%)
sets to support model training, hyperparameter tuning, and
unbiased performance evaluation, respectively. The
preprocessed images were then saved into a new directory
with filenames indicating their corresponding class labels.

3.3 Modeling

3.3.1 END-TO-END DEEP LEARNING CLASSIFICATION

In this approach, DenseNet121 was selected as a base
architecture for transfer learning due to its efficient feature
reuse and gradient flow via dense connectivity, offering a
strong balance between performance and computational
cost. This makes it particularly effective on small to
medium sized datasets by reducing overfitting. The
training was done in 2 stages.

In the initial stage, 1024-dimensional features were
extracted from the frozen DenseNet121 backbone and
passed through a custom classification head with three
dense layers (256 — 128 — 64), using Swish activation,
strong L2 regularization (le-2), batch normalization
(momentum=0.95), and dropout (0.4, 0.3, 0.4).

To address class imbalance, focal loss with class-specific
alpha weights was used, supplemented by dynamic class
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reweighting. Weights were further manually boosted for
underrepresented yet clinically important classes
(moderate 1.6, proliferative x<1.4, severe x<1.2). Label
smoothing and a confidence penalty were added to improve
generalization.

RMSprop was chosen over Adam for stability in non-
stationary settings, combined with cosine annealing (1e-3
— le-5 over 50 epochs) and early stopping.

In the second fine-tuning stage, the last 30 layers of
DenseNet121 were unfrozen. A revised head (512 — 256)
with ReLU activation, lighter L2 regularization (5e-5, le-
4), batch normalization, and dropout (0.3, 0.2) was
employed. Fine-tuning used a lower learning rate (le-5)
with RMSprop (centered=True) and exponential decay
(0.9%epoch) for gradual convergence. With this two-stage
fine-tuning approach, it prevents the model from
memorizing patterns in the training set and avoids
overfitting. This could be seen from the comparable
validation and test set evaluation metrics in Table 2.

Table 2. Comparison of validation and test set evaluation metrics
for end-to-end DenseNet121 model classification

DATASET Acc KAPPA F1 ROC AUC
VALIDATION  73.0% 59% 49.3% 85.8%
TEST 75.1% 625% 54.0% 87.3%

3.3.2 CNN FEATURE EXTRACTION WITH TRADITIONAL
CLASSIFIERS

This approach separates the feature extraction and
classification stages. EfficientNetB3 is first used to extract
high-dimensional feature vectors from the preprocessed
retinal images. These extracted features are then fed into
traditional machine learning classifiers, including Support
Vector Machines (SVM), Random Forest, and XGBoost.

To address the issue of class imbalance in the training set,
we applied the Synthetic Minority Oversampling
Technique (SMOTE), which generates synthetic samples
for underrepresented classes. This allows the classifiers to
better learn patterns across all severity levels, potentially
improving performance on minority classes. Table 3
presents the classification performance metrics before
applying SMOTE, while Table 4 summarizes the results
after SMOTE was applied. Both are for the test dataset.
Comparing these tables allows us to assess the
effectiveness of SMOTE in improving model performance,
particularly for underrepresented categories such as severe
and proliferative diabetic retinopathy.

Table 3. Performance of Traditional Classifiers Before Applying
SMOTE on EfficientNetB3-Extracted Features

MODEL Acc KAPPA F1 ROC AUC

SVM 70% 56% 53% 90%
XGBoosT  75% 60% 48% 88%
RF 71% 53% 32% 87%

Table 4. Performance of Traditional Classifiers After Applying
SMOTE on EfficientNetB3-Extracted Features

MOoDEL Acc KApPA F1 ROC AUC
SVM 75% 61% 56% 90%
XGBoost  76% 63% 55% 90%
RF 73% 58% 49% 88%

Table 3 shows the performance of SVM, XGBoost, and
Random Forest before applying SMOTE, while Table 4
shows this after. From the results, we can see that SMOTE
does improve the performance on almost every metric, for
all 3 models.

Overall, the best performing model was XGBoost after
SMOTE. This model achieved 76% accuracy, and a ROC
AUC of 90%. While not extremely accurate, this does
mean that 76% of all patients are being correctly classified.
However, it is worth noting that F1 score across the board
was quite poor, with no model exceeding 60%. This is
typically due to poor recall in the model.

3.3.3 CNN FEATURES EXTRACTION WITH WRAPPER-
BASED FEATURE SELECTION

In this approach, feature extraction is performed using both
EfficientNet and DenseNet architectures. The extracted
features from both models are concatenated to form a
combined and more informative feature representation for
each image. To reduce dimensionality and retain only the
most relevant features, the Grey Wolf Optimizer (GWO) is
applied as a wrapper-based. The selected features are then
used as input to traditional machine learning classifiers,
including Support Vector Machines (SVM), Random
Forest, and XGBoost. This approach aims to eliminate
redundant information and enhance both the efficiency and
accuracy of the classification process. In the end there are
987 features selected out of 2304 features.

Table 5. Performance of Traditional Classifiers with Gray Wolf
Optimizer as Wrapper-Based Feature Selection

MoDEL Acc Karpa F1 ROC AUC
SVM 80% 69% 65% 93%
XGBoosT  79% 68% 48% 90%
RF 77% 64% 50% 90%

Based on Table 5, among the three, SVM achieved the
highest overall performance, with an accuracy of 80%, a
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Cohen’s Kappa score of 69%, an F1-score of 65%, and a
ROC AUC of 93%. These results indicate that SVM not
only predicted labels correctly but also maintained strong
agreement with the ground truth and effectively balanced
precision and recall across all classes. XGBoost, while
yielding competitive results in terms of ROC AUC (90%)
and Kappa (68%), demonstrated a notably lower F1-score
(48%), suggesting a tendency to favor majority classes—
likely due to class imbalance in the dataset. Random Forest
also maintained robust AUC and Kappa values (90% and
64%, respectively), but its F1-score (50%) was lower than
that of SVM, indicating less balanced predictive
performance. Overall, these findings highlight SVM as the
most effective model in this setup, benefiting from both the
discriminative power of kernel-based learning and the
compact feature subset identified by GWO.

3.34 VISION TRANSFORMER FOR END-TO-END

CLASSIFICATION

In this final approach, rather than using convolutional
layers, we apply self-attention mechanisms, treating parts
of the image as tokens. We used a pre-trained ViT model
(ViT-Base, Patch Size 16, 224px Input, ImageNet-21K
pretrained) from Google, which was available via Hugging
Face. Data in the training set was first pre-processed in the
same way as before, and the model was then trained over
10 epochs, with a learning rate of 0.0001, and optimizer
Adam with weight decay (AdamW).

It was found relatively quickly that the ViT model seemed
prone to overfitting, as we monitored accuracy over both
the training and validation loss during training. While
training accuracy continued to climb, validation accuracy
stayed the same and even started to perform worse after 5
epochs. We hence made use of a checkpoint at epoch 5 and
used the model which had been trained over 5 epochs as
our final model.

Training vs Validation Accuracy over Epochs
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Figure 3. Training vs Validation Accuracy of ViT Model Over 10

Epochs

The model achieved an accuracy of 82%, recall of 59.5%,
precision of 72.6%, F1 score of 61%, Kappa Score of 72%
and ROC AUC of 98.9%.
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Figure 4. Confusion Matrix of ViT Model on Test Set

3.4 Evaluation

After experimenting with various modeling approaches,
we selected the pre-trained ViT model as the final model.
The decision was based on a comprehensive evaluation of
key metrics across different modeling approaches. The
following Table 6 compares the best performance results
from each modeling approach across the key metrics,
including accuracy, Cohen’s Kappa, F1-score, and ROC
AUC.

Table 6. Comparison of Best-Performing Results Across All
Modeling Approaches

MODEL Acc Kapp F1 ROC

A AU
C

End-to-End 75.1 62.5 54.0 87.3%

DenseNet121 % % %

CNN Feature 76% 63% 55% 90%

Extraction with

Traditional

Classifiers

(XGBoost+SMOT

E)

CNN Features 80% 69% 65% 93%

Extraction with
Wrapper-Based
Feature Selection
(SVM)

End-to-End Vision

0, 0, 0
Transformer 82%  72%  61%

98.9%
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Based on Table 6, the pre-trained VIiT model shows
superior performance with highest accuracy of 82%,
Cohen’s Kappa of 72%, and ROC AUC of 98.9%. The
results reflect that ViT model has strong agreement with
the true labels and excellent ability in distinguishing
between different diabetic retinopathy severity levels.
Although the F1-score of ViT is slightly lower than the
score from SVM with Gray Wolf Optimizer (61% to 65%),
ViT’s overall strong performance still provides greater
confidence for real-world clinical deployment.

3.5 Discussion of Binary Classification

Given that this model is intended to be deployed in a
medical context, there is concern that even slight
inaccuracy could lead to catastrophic results. If a patient
who does have diabetic retinopathy is told they do not have
it, this could result in lack of treatment and eventual
deterioration of their sight. Hence, it is worth questioning
whether 82% accuracy and a 0.72 kappa score is truly
sufficient for such a use case.

While we agree that 82% accuracy does leave much to be
desired, we caution that this accuracy score is tied
specifically to the multi-class classification, which
indicates that 82% of the time, the model not only classifies
whether a patient has Diabetic Retinopathy but can classify
how severe their disease is.

In a real-world context, patients will likely require medical
intervention at any level of DR. Hence, if the disease
classifies the patient as having moderate DR when in
reality they have severe DR, the consequences are not as
severe, as the patient would have to seek treatment in both
cases, and human doctors will have sight over the scans and
be able to follow up appropriately, regardless of the
model’s prediction.

To this extent, we find that while multi-class classification
is good to have and can improve doctors’ workflow, the
crucial role of the model lies in its binary classification
ability (predicting whether a patient has DR or not). Hence,
the suitability of the model to be deployed in a real-world
use case should also be assessed on its binary classification
ability. We hence reclabelled the output of the best
performing model, ViT, such that all classes other than No
DR were relabelled as 1, and No DR alone was labelled as
0.

The model performs well as a binary classification model,
with an accuracy of 96.55%, precision of 97.1%, recall of
96.06%, F1 Score of 96.58% and ROC AUC of 98.97%.
The Kappa score was also 93.09%.

In particular, we want to focus on the recall score, since
recall is an important metric in a medical context. Recall
measures the number of positive cases were correct
identified as true positives. In other words, we are able to

correctly identify 96.06% of patients who actually have
DR.

These metrics’ significant improvement over the multi-
class classification metrics provides assurance that the
model is sufficiently reliable. Despite only classifying 82%
of patients into the exact right class, we know that the
model is still able to correctly identify almost all patients
who are suffering from DR, such that they can receive
medical intervention in a timely manner.

Confusion Matrix: No DR vs Has DR
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Figure 5. ViT Model Confusion Matrix for DR Detection (Binary
Classification)

4. Explainability and Deployment

4.1 Grad-CAM and Attention Visualizations

Having selected our model, we move on to methods to
enhance the interpretability and practical usability of our
system. Deep learning models such as Convolutional
Neural Networks (CNNSs) and Vision Transformers (ViTs)
are inherently complex and often criticized as "black-box™
models due to the difficulty in understanding how input
features influence predictions. However, explainability is
crucial in the medical industry, as it is important in
supporting doctors’ clinical judgment and decision
making. Explainability further provides safeguards against
misclassification and increases trust among end-users by
making the model’s reasoning accessible and accountable.

To address this, we employ visual explanation techniques
tailored to each model class. For CNNs, we use Gradient-
weighted Class Activation Mapping (Grad-CAM). This is
a method that utilizes the gradients of the target class
flowing into the last convolutional layer to generate a
localization map. This highlights the regions of the input
image that most strongly influence the output decision,
offering insight into the spatial attention of the model.

On the other hand, ViTs lack convolutional layers, and are
hence unable to generate Grad-CAM visualizations.
Instead, we utilize attention heatmaps which visualize the
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attention weights associated with the final [CLS] token, or
the classification token in transformer architectures. In
other words, the heatmap shows which areas were most
important in generating the given classification.

4.2 Comparison Between Models

Grad-CAM and Attention Heatmaps also allow us to make
understandable comparisons between our models, as it
provides some intuitive understanding of why certain
models perform better than others, and provides insight
into why some models are more prone to overfitting that
others.

In particular, we consider the best performing CNN,
DenseNet121, against ViT. Below, we see how the the two
different models pay attention to very different areas of the
same image. DenseNet (left) saw the most activation over
the left and right peripheral areas of the retina, while ViT
(right) saw most attention in small portions near the bottom
and middle of the retina image.

VIT Attention Heatmap

DenseNet12] Grad-CAM

Figure 6. Visual Comparison of Model Focus Areas:
DenseNet121 Grad-CAM vs ViT Attention Heatmap

These differences give us some intuition into why ViT
might have performed better than DenseNet. ViT had more
focused attention, as indicated by the smaller red areas,
while more than half of the images saw high activation in
DenseNet. Further, we obtain some insight into why ViT
seemed to converge so quickly and tended to overfit the
training set, since it tended to look at very small, specific
areas. This might have allowed it to learn very specific
details about the training set that could not be generalized
to the validation or test set.

4.3 Large Language Model (LLM) Integration

While the visualization is helpful to direct attention to the
most crucial parts of the retina, it may still not prove useful
in cases where the user is not equipped to understand such
heatmap visualizations, such as medical assistants or
doctors with little experience with such deep learning
models.

To bridge this gap, we built a LangChain pipeline that
passes the ViT attention map overlaid on the original
image, to a Large Language Model (LLM). The LLM is
then prompted to explain, in natural language, how specific
regions of the image contributed to the classification.

For this project, we used OpenAl’s GPT-40, which
supports both visual and textual inputs and produces
human-readable explanations. Our pipeline passes the
overlaid Grad-CAM image along with the model’s numeric
prediction to GPT-40, which is prompted to generate an
explanation that relates the visual evidence to the model’s
classification in a way that is accessible to users. An
example of the LLM’s output for the image in 4.2 is
produced below.

The model predicted 'Mild' with a
confidence of 63.0%. The attention
heatmap overlaid on the retina image
highlights specific areas that
contributed most to this prediction.
Here’s a breakdown of the key areas of
interest:

1. **Inferior Region**: The most
prominent red area 1is located in the
inferior part of the retina. This

suggests significant attention was given
here, possibly indicating early signs of
mild abnormalities or changes that
warrant further investigation.

2. **Central Retina**: Several red spots
are visible in the central region. These
areas may show subtle changes or features
that the model associates with a mild
condition.

3. **Temporal Side**: There is noticeable
attention on the temporal side of the
retina. This area should be examined for
any early signs of mild pathology.

4. **Superior Region**: Some attention is
also given to the superior part of the
retina, though less intense than the
inferior region. It’s worth checking for
any mild changes here as well.

For follow-up, focus on these highlighted
areas, especially the inferior region, to
assess any early signs of retinal changes
or abnormalities. Further clinical
evaluation and imaging may be necessary
to confirm the model's prediction and
ensure accurate diagnosis and management.

4.4 Deployment

For deployment, a lightweight web application was
developed using the Python Flask framework to provide an
accessible and interactive interface for diabetic retinopathy
detection. The application integrates the trained Vision
Transformer (ViT) model, allowing users to upload retinal
fundus images and receive real-time classification results.
Flask was chosen for its simplicity, flexibility, and
compatibility with Python-based machine learning
workflows. The deployed system processes input images



DeepSight: Automated Diabetic Retinopathy Screening with Machine Learning

through the ViT model on the backend and returns the
predicted severity level to the user via a web interface.

As shown in Figure 7, the output page presents the original
retinal image alongside an attention map generated by the
Vision Transformer (ViT) model. The attention map
highlights the regions the model focused on when making
its classification, providing visual cues that can be useful
for clinical interpretation. Below the images, the predicted
class label (e.g., No DR) is displayed along with the
model’s confidence score. Additionally, a brief region-
based explanation generated by LLM is provided to guide
users or medical professionals in understanding why
certain areas were considered important. This feature
supports more informed decision-making and bridges the
gap between automated predictions and clinical insight.

Figure 7. Sample Output Page of Web Application. It will show
the original image, the attention map, and the explanation
generated using OpenAl APl (GPT-40)

5. Limitations and Future Work

5.1 Limitations

Despite the promising outcomes, there are several
limitations that we need to be aware of. One key limitation
of this study is the dataset itself. As the dataset only has
3662 images, which is not particularly large, it might raise
concerns about whether the model performance would be
consistent when it is being applied to diverse clinical
settings with varied patient populations. Additionally,
although we applied SMOTE to address class imbalance
issues, severe and proliferate classes are still
underrepresented. This could potentially limit the
performance of the model when it generalizes to real-world
scenarios.

Another limitation relates to the model performance.
Although we achieved a relatively good accuracy (82%)
and a high ROC AUC (98.9%) in the final model, the F1
score (61%), especially the recall (59.5%), reveals some
concerns. The low recall indicates that the model misses

identifying about 40% of patients who actually have
diabetic retinopathy. In real-world medical screening,
recall is very important because missing a diagnosis could
lead to patients not receiving timely treatment and hence a
very high cost. Moreover, the Cohen’s Kappa score of 72%
shows that there is still a meaningful gap between perfect
agreement and actual agreement. These metrics suggest
that the model’s performance in correctly identifying all
disease cases and severity still has room for improvement.

Lastly, our final model VIiT has a tendency to quickly
overfit because it tends to memorize very small, overly
specific details from the training data. Without robust
regularization, this issue could reduce the effectiveness and
ability to generalize on new unseen data in the real-world
clinical scenarios.

5.2 Future Work

To overcome these limitations, future work should first
focus on the dataset itself. It is important to collect more
retinal fundus images, particularly those showing Mild,
Moderate, Severe, and Proliferate DR, as it would enhance
the model’s performance and generalizability to real-world
clinical uses. Additionally, exploring more advanced data
augmentation techniques like Generative Adversarial
Networks (GANs) could potentially balance the class
distribution better, solving the imbalance issue and making
the model more robust.

For the modeling part, future work could explore more
hybrid approaches, such as combining convolutional
neural networks and vision transformers. Since CNN
performs quite well in detecting detailed, localized features
from images, and ViT is good at capturing global contexts
across the entire images, combining these two approaches
might significantly boost the model classification
performance. In addition, to reduce the overfitting in ViT,
advanced regularization strategies or techniques
specifically designed to deal with overfitting can be
explored and applied.

Furthermore, adding professional clinician feedback or
relevant knowledge databases into the web application can
refine the interpretability and explainability of the results
by aligning visual explanations more closely with real-
world clinical reasoning, effectively improving the
practical utility of the application.

Lastly, future research could incorporate patient data
beyond just the retinal images. For example, including
biomarkers such as glucose level could potentially lead to
more comprehensive predictions. This approach would not
only help validate the model accuracy but also improve
preventive healthcare interventions.

6. Conclusion

This project successfully developed an automated diabetic
retinopathy screening system, integrating powerful deep
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learning architectures with traditional classifiers and
explainability methods. Our experiments showed that
while CNNs and hybrid pipelines delivered decent baseline
results, the VIiT outperformed other models in prediction
accuracy, agreement with ground truth labels, as well as
separability. Although the recall was moderate in multi-
class classification, binary classification performance was
excellent, meeting the critical requirements of real-world
medical screening contexts where missing positive cases
must be minimized.

By integrating visual interpretability techniques such as
Attention Heatmap and natural language explanations
generated by OpenAl’s GPT-40, we bridged the gap
between complex black-box model outputs and practical
clinical understanding, promoting more informed decision-
making. Furthermore, we deployed a lightweight web
application using the Flask framework and integrated the
ViT model alongside attention heatmap and LLM-based
explanations, allowing users to upload retinal fundus
images and receive interpretable classification results. This
application enhances practical accessibility for both end
users and healthcare professionals.

However, important limitations still remain, particularly
regarding dataset size and class imbalance issues. Future
work should focus on expanding the dataset, particularly
for underrepresented classes. Directions such as hybrid
CNN and ViT models, clinician feedback incorporation,
and multimodal patient data integration could also be
explored for improving model robustness and real-world
utility. Overall, DeepSight demonstrates a significant step
toward creating a more accurate, interpretable, and
accessible Al-driven diabetic retinopathy screening
system.
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