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Abstract

This study presents a scalable NLP pipeline that
transforms customer reviews into valuable
insights through sentiment classification, topic
clustering, and LLM-based summarization. Using
a balanced Amazon Reviews dataset, a fine-tuned
RoBERTa model achieved 81.5% accuracy in
classification. Clustering of over 14,205 negative
reviews using BERTopic with MPNet
embeddings revealed 25 semantically coherent
themes, such as delivery issues and product
defects. Subsequently, Gemini 2.0 Flash, a high-
performance generative model was used to
synthesize cluster-specific summaries and
actionable business recommendations.

1. Introduction

In today’s data-saturated digital environment, businesses
across industries face an unprecedented volume of
customer-generated content, particularly in the form of
product reviews. These reviews—distributed across
platforms like Amazon, social media, and brand
websites—contain rich sentiment, behavioral cues, and
product-related feedback. However, due to their
unstructured and heterogeneous nature, systematically
extracting insights from such data remains a persistent
challenge. The diversity in writing styles, use of informal
language, and presence of domain-specific vocabulary
further complicate the task of interpretation, making
manual analysis both time-consuming and infeasible at
scale.

This project aims to address these challenges by designing
and implementing an end-to-end Natural Language
Processing (NLP) pipeline that harnesses recent
advancements in machine learning and large language
models (LLMs). Our objective is not only to automate the
sentiment classification of customer reviews into positive,
neutral, and negative categories but also to mine deeper
insights from negative feedback—traditionally the most
informative yet complex to interpret. By clustering
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reviews with similar complaints and leveraging LLMs for
summarization and recommendation generation, we aim to
close the loop between passive sentiment detection and
proactive business response.

The proposed solution is structured as a three-stage
pipeline. First, it performs supervised sentiment
classification to establish a high-accuracy foundation for
downstream analysis.  Second, it applies semantic
clustering (via BERTopic) to group negative reviews into
thematically coherent categories, surfacing dominant pain
points and emergent issues. Third, it uses generative LLMs
(Gemini 2.0 Flash) to synthesize cluster-specific
summaries and generate actionable suggestions—bridging
the gap between descriptive analytics and operational
Strategy.

This automated approach offers significant advantages
over traditional feedback management systems. It enables
businesses to monitor trends in real-time, prioritize high-
impact issues, and act quickly on root causes, thereby
improving product design, customer service protocols, and
overall consumer satisfaction. More importantly, by
systematically identifying patterns across thousands of user
reviews, the pipeline supports strategic decision-making,
enhances brand trust, and reinforces competitive
differentiation in increasingly customer-centric markets.

2. Dataset & Exploratory Overview

The dataset used in this project originates from the
McAuley Lab’s Amazon Reviews 2023 corpus, a large-
scale resource containing millions of user-generated
reviews across a diverse range of product categories
(McAuley Lab, 2023). For exploratory analysis, a 100,000-
record sample was randomly drawn from the
raw_review_* configurations, with each record containing
review metadata (e.g., rating, title, helpful vote count) and
review content. To ensure class parity for model training
and evaluation, a balanced dataset was constructed by
stratified sampling, selecting 1,000 reviews per sentiment
class (positive, neutral, negative) across 34 source files.
This process resulted in a balanced dataset of 102,000
records—closely matching the size of the original raw
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sample—while mitigating sentiment bias and preserving
category diversity.

2.1 Sentiment Distribution

The raw dataset exhibits a class imbalance typical of real-
world feedback, with ~74% positive, ~18% negative, and
~9% neutral reviews. To prevent class dominance in model
learning, a balanced set was constructed by enforcing equal
sample sizes across sentiment categories (Appendix A).

2.2 Text Length Distribution

Both raw and balanced datasets reveal a right-skewed
distribution, with most reviews under 500 characters and a
long tail extending beyond 3,000 characters. This
necessitates token truncation, particularly for models
constrained by input sequence lengths such as transformers.

2.3 Helpful Votes by Sentiment

Although positive reviews are more prevalent, negative
reviews often accrue higher median helpfulness scores.
This pattern suggests that critical feedback may be
perceived as more informative by other users (Appendix
A).

2.4 Keyword Analysis via TF-IDF & Word Clouds

TF-IDF and word cloud visualizations reveal semantic
divergence by sentiment. Positive reviews frequently
contain affirmatives such as “great,” “love,” and “easy,”
whereas negative reviews are marked by terms like “waste,”
“broke,” and “disappointed” (Appendix A). These lexical
signals validate the viability of sentiment classification via
supervised learning.

3. Data Preprocessing

Data preparation proceeded in stages to ensure integrity,
balance, and compatibility with machine learning models.
We streamed data from the Hugging Face version of the
Amazon Reviews 2023 dataset (McAuley-Lab, 2023),
selecting all records under the raw_review_* configuration.
Reviews were assigned sentiment labels based on star
ratings: 1-2 as negative, 3 as neutral, and 4-5 as positive.
From each source file, a maximum of 5,000 reviews per
class were extracted to ensure both computational
feasibility and representativeness.

To construct a modeling-ready dataset, we then cleaned the
balanced dataset. Entries lacking either the title, text, or
sentiment fields were excluded. Each review was formed
by concatenating the title and main review text into a single
input string. Sentiments were encoded numerically using a
manual mapping dictionary, assigning 0 to ‘negative’, 1 to
‘neutral’, and 2 to ‘positive’. Finally, a unique review_id
was generated for each row to maintain alignment across
models and facilitate traceability in ensemble evaluation.

We explored several text-cleaning strategies, including
HTML tag removal and stopword filtering using NLTK.
Although this approach enhanced keyword clarity during

exploratory analysis (e.g., for TF-IDF and word clouds),
we deliberately excluded stopword filtering from the
model pipelines, as it risked removing negators like “not”
that are critical to sentiment polarity (Jindal & Liu, 2008).
Thus, stopword cleaning was retained for insight
generation, not feature learning.

4. Sentiment Analysis

4.1 Model Selection and Justification

To capture the varying complexity and expressive power
of sentiment-bearing text, we implemented three
complementary models across classical, deep, and
transformer-based paradigms, followed by an ensemble
voting system for improved generalization.

Logistic Regression served as our classical baseline. It is
fast, interpretable, and works effectively with TF-IDF
features, making it ideal for benchmarking before
transitioning to more sophisticated architectures.

Bi-LSTM with RoBERTa Embeddings was introduced as
our deep learning solution. By combining pre-trained
transformer embeddings with recurrent sequence modeling,
this architecture balances expressiveness and training
efficiency while being able to capture sequential
dependencies in the review text.

Fine-tuned RoBERTa Transformer represents the state-of-
the-art approach via transfer learning. We leveraged the
HuggingFace roberta-base checkpoint with a classification
head trained on our labeled dataset. The model jointly
learns task-specific representations with large-scale
language knowledge, achieving strong generalization with
minimal tuning.

Each model relied on tokenized input representations: TF-
IDF vectorization for the logistic regression model,
RoBERTa token embeddings for the Bi-LSTM, and
Hugging Face’s AutoTokenizer for the transformer. For the
transformer model, we applied a maximum length of 512
tokens with truncation, attention masks, and dynamic
padding.

Finally, we implemented a majority voting ensemble
across all three models (Sagi & Rokach, 2018). This step
aims to capitalize on the strength of each model while
smoothing out individual prediction biases.

This layered model design provides a rigorous evaluation
of sentiment classification methods while offering insight
into tradeoffs between accuracy, interpretability, and
scalability.

4.2 Training and Tuning

All models used a consistent, stratified 80/10/10 split
across training, validation, and test sets, totaling 102,000
reviews from a manually balanced dataset (3,000 samples
per sentiment across 34 source files). This ensured
consistent evaluation and prevented data leakage.
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TF-IDF for Classical Models: Logistic Regression used a
combination of TF-IDF features extracted separately from
review titles and texts. Title features were capped at 3,000
dimensions and text features at 5,000.

Feature matrices were horizontally concatenated and fed
into scikit-learn’s LogisticRegression with max_iter=1000.
No deep tokenization or embeddings were used for this
model

Bi-LSTM with RoBERTa Tokenization: For the Bi-LSTM,
we concatenated titles and texts and tokenized them using
the RoBERTa tokenizer with truncation to 64 tokens and
padding. Tokenized pairs were passed through a frozen
RoBERTa encoder followed by a bidirectional LSTM
(hidden size = 128 per direction). A dense layer projected
the final hidden states to the sentiment logits. Early
stopping based on validation macro F1 was employed,
terminating training after 4 epochs.

Transformer Fine-Tuning: We fine-tuned the full Roberta-
base transformer model using HuggingFace’s Trainer API.
Tokenization followed the same process as above, but with
a maximum sequence length of 512 tokens. We used a
batch size of 16, a learning rate of le-5, and a weight decay
0f 0.05. Training ran for up to 5 epochs with early stopping
enabled (patience = 2). Validation was conducted every
epoch, and the best model checkpoint was restored for test
evaluation.

Ensemble via Majority Voting: Each model generated
prediction files with review id, true label, and predicted
labels. These were merged on review id, and the final
ensemble label was assigned via majority voting among the
three models. This approach retained model independence
while improving overall robustness.

4.3 Evaluation

Although positive reviews are more prevalent, negative
reviews often accrue higher median helpfulness scores.
This pattern suggests that critical feedback may be
perceived as more informative by other users (Appendix
A).

Model performance was assessed using accuracy, macro-
averaged F1, and negative-class recall, reflecting both
overall performance and ability to detect problematic
reviews.

Logistic Regression achieved 74.3% accuracy and 0.742
macro F1, with a negative recall of 0.758. It performed best
on the positive class but struggled with neutral sentiment,
reflecting the limitations of sparse features in capturing
nuanced expression.

Bi-LSTM improved to 77.6% accuracy and 0.775 macro
F1, with a slight gain in negative recall (0.773). The
recurrent architecture enabled better sequence modeling,
especially for longer reviews. However, training was more
time-consuming and required tuning the embedding
truncation length to avoid GPU memory overflow.

Transformer (Fine-tuned RoBERTa) achieved the highest
standalone performance with 81.5% accuracy, 0.816 macro
F1, and 0.815 negative recall. RoBERTa’s pre-trained
contextual embeddings proved highly effective in
distinguishing sentiment nuances, particularly improving
neutral-class classification (precision = 0.82, recall = 0.81).
This model’s success confirms the value of transfer
learning for language understanding tasks.

Majority Voting Ensemble offered balanced performance
across all classes, achieving 80.3% accuracy and 0.800
macro F1. Although it did not outperform RoBERTa in
absolute terms, it reduced variance across classes. For
instance, neutral-class F1 improved from 0.67 (LSTM) and
0.64 (Logistic) to 0.70 in the ensemble (Appendix C).
Negative recall also remained high (0.79), indicating
effective identification of dissatisfaction.

The ensemble thus emerges as a stable and interpretable
deployment choice, even when individual model
performances fluctuate across subsets.

4.4 Insights and Impact

The sentiment classification results highlight several
practical and theoretical contributions. Among the models,
the fine-tuned RoBERTa transformer consistently
achieved the highest performance, demonstrating the
advantage of pre-trained language representations in
understanding user-generated content. Its strength lies in
capturing context and subtle sentiment cues, especially in
ambiguous or mixed reviews.

Despite being a simpler model, Logistic Regression
delivered reasonable performance and offered advantages
in speed and interpretability. This makes it suitable for
constrained environments or early-stage prototyping. The
Bi-LSTM model, combining deep learning with RoOBERTa
embeddings, balanced efficiency with improved recall,
particularly for underrepresented sentiments.

A key insight is the consistent ability of all models to detect
negative sentiment, with negative recall exceeding 0.75. In
practical settings, this supports early flagging of user
dissatisfaction and helps guide interventions such as
customer support or quality control.

The structured prediction format—based on unique review
identifiers and standardized text fields—enables easy
integration into real-world applications. Examples include
automated feedback monitoring, alert systems, or input for
recommender engines. While this study did not incorporate
explainability tools, the current framework is compatible
with SHAP or LIME, which could enhance transparency in
future work (Ribeiro et al., 2016).

Together, these findings support the use of sentiment
models as a scalable, adaptable tool for consumer insight
and review moderation.

5. Clustering Negative Reviews
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Table 1. Method Explored

Method Embe(!dln.g / Clustering Model Silhouette Result
Vectorization Score
Basic separation; generic,
TF-IDF + KMeans TF-IDF KMeans ~0.016 hard-to-label topics
. Sentence . . .
BERTI;ZI\I/IH;::;delng * Transformer KMeans ~0.039 Seﬁ: angilizll};éggﬁ:ed’
(MPNet) P Y
. MPNet . )
BERTopic (MPNet, Contextual BERTopic N./A. Final method; clear themes
Reduced) X (qualitative) and useful outputs
Embedding

5.1 Feature Engineering

To explore recurring themes in customer dissatisfaction,
we utilized a dataset of over 14,205 product reviews that
had been predicted as negative by the Majority Voting
Ensemble sentiment classifier. Each review contained a
title and text field, which were concatenated into a single
text_combined field after standard preprocessing.

During the feature engineering phase, we experimented
with different representations of review content. We
applied TF-IDF vectorization separately on title, text, and
their combination. Each version was evaluated as input for
clustering, with the goal of identifying which encoding best
preserved topic-level distinctions. We used standard TF-
IDF parameters (min_df=5, max df=0.9) and applied
KMeans to assess clustering quality. The best-performing
representation from this approach—TF-IDF on combined
title + text—was used as a baseline before exploring
embedding-based methods.

5.2 Methods Explored

We evaluated three major clustering strategies to group the
transformer-predicted negative product reviews into
semantically coherent themes (7able 7). These methods
were compared in terms of clustering quality,
interpretability, and practical usability.

Our baseline approach used TF-IDF vectorization
combined with KMeans clustering. We experimented with
different text inputs, including text alone, title alone, and a
concatenated title + text format. Each representation was
vectorized using standard TF-IDF parameters and clustered
across a range of values for K (from 2 to 14). The best-
performing setup was based on the combined title + text
input, which offered marginally better separation than text
alone. However, the Silhouette Scores remained low—
with a maximum of only ~0.016—indicating weak cluster
boundaries. Furthermore, the resulting clusters were often
dominated by high-frequency, generic words such as
"product,” "not," or "use", and failed to capture meaningful
semantic themes. Despite attempts to tune vectorization
thresholds or apply dimensionality reduction via SVD, the

TF-IDF  based
interpretability.

clusters lacked both depth and

To improve semantic representation, we transitioned to
embedding-based clustering using Sentence-BERT models,
specifically all-MiniLM-L6-v2 and all-mpnet-base-v2
from the SentenceTransformers library. These models
encode full sentences into dense, contextual embeddings
that better preserve the underlying meaning of review text.
KMeans was then applied to these embeddings. Compared
to TF-IDF, this approach provided modestly improved
cohesion in clustering, as reflected by slightly higher
Silhouette Scores (up to ~0.039). However, due to the high
dimensionality and lack of inherent explainability in the
clusters, it remained difficult to interpret the output.
Without a mechanism to extract representative keywords
or summarize clusters, this method lacked practical clarity
and was not well suited for human labeling or business
analysis.

The most effective approach was BERTopic, applied with
all-mpnet-base-v2 as the embedding model. BERTopic
leverages sentence-level contextual embeddings to group
semantically similar reviews, and it automatically
generates interpretable topic descriptors by extracting top
keywords per cluster. Importantly, we used BERTopic's
reduce topics() function to merge semantically
overlapping clusters and constrain the final output to 25
distinct topics. This not only simplified the output but also
significantly improved the interpretability, distinctiveness,
and coherence of each topic. Unlike earlier methods,
BERTopic provided a clear representation of each cluster's
thematic focus—for instance, delivery delays, refund
issues, product defects, or customer service problems—
along with representative sample reviews. As a result, this
approach proved highly effective and was selected as our
final clustering method.

5.3 Final Choice and Justification

After systematically evaluating all clustering approaches,
we ultimately selected BERTopic with MPNet embeddings,
combined with topic reduction to 25 themes, as our final
and most effective method. This decision was grounded in
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both qualitative and structural advantages observed during
the analysis.

In contrast to KMeans, which suffered from the sparsity of
TF-IDF vectors and struggled to form semantically
meaningful clusters, BERTopic successfully leveraged
contextual sentence embeddings to identify nuanced
semantic patterns across the review corpus. These
embeddings captured deeper relationships between
reviews that shared similar sentiment or subject matter,
even when the surface vocabulary differed. As a result,
clusters generated by BERTopic exhibited substantially
better cohesion, with topics that were not only more
compact but also more interpretable.

To further enhance clarity and reduce noise, we applied
BERTopic's built-in reduce topics() function, which
merged semantically overlapping clusters based on
distance in embedding space. This step yielded a clean and
distinct set of 25 topics, eliminating redundancy without
losing topical diversity. Each topic was summarized by its
top-ranked keywords and linked to a representative
review—the most confidently assigned sample—providing
a strong anchor for human interpretation and business
application.

This final output addressed the core limitations observed in
previous methods:

e [t resolved the high-dimensional noise and generic
term dominance seen in TF-IDF + KMeans;

e [t improved interpretability through automated topic
labeling;

e [t delivered insights that closely aligned with real-
world customer pain points, including issues related
to product quality, delivery problems, misleading
descriptions, and refund experiences.

Moreover, the structure of BERTopic’s output made it well
suited for downstream applications such as manual
labeling, issue tracking, customer support optimization,
and even LLM prompt construction. By combining
semantic depth with practical interpretability, BERTopic
ultimately provided the most valuable foundation for
clustering negative product reviews in our analysis.

6. LLM Interpretation & Recommendation
6.1 LLM Model Selection

We selected Gemini 2.0 Flash from Google’s Generative
Al suite to generate tailored business insights from
clustered negative reviews, based on its strong alignment
with our operational needs. First, it offers exceptional
speed and cost-efficiency, making it well-suited for
scalable, production-level deployments. Second, the model
excels at prompt-driven tasks such as summarization, root
cause analysis, and recommendation generation,
consistently producing structured and business-relevant
outputs that require minimal post-processing. Most

importantly, Gemini Flash demonstrates a high degree of
consistency with minimal hallucination, ensuring that the
insights derived from customer feedback remain factually
grounded and actionable. By choosing Gemini, we
achieved an effective balance between latency, output
quality, reliability, and cost—key pillars for a robust and
scalable customer insights platform.

6.2 Prompt Engineering

Our system sends a representative sample (20 reviews per
cluster) to Gemini along with structured instructions. The
prompt is started with concise instruction, and changes
iteratively based on the result. Although we thought about
giving a few shot examples, as the identified cluster might
be different every time, we decided to not give examples
and keep the instruction simple and concise.

Final prompt is as below:

""" You are an experienced customer success expert. Based
on the information provided below, do the following: 1.
Provide a concise summary of what the negative feedback
is mainly about. 2. For each of the categories provided,
provide potential root cause and short recommendation to
address the issue. Be clear and concise. input: {input json}

6.3 Performance & Evaluation

The performance of Gemini 2.0 Flash was manually
evaluated by comparing its outputs against the original
review clusters. The evaluation focused on three key
aspects: relevance, actionability, and consistency.
Specifically, we checked whether the generated summaries
accurately reflected the main issues within each cluster,
whether the recommendations were practical and could
inform real business decisions, and whether the responses
were coherent and non-repetitive across clusters.

After conducting ten rounds of testing, we observed that
the model consistently identified core pain points—such as
missing parts, product defects, or size mismatches—and
translated them into actionable suggestions like quality
control improvements or packaging enhancements.

However, we also noted some limitations. In a few cases,
the output included vague or overly generalized statements,
and the overall quality of recommendations proved highly
dependent on the diversity and richness of the input
reviews.

Despite these drawbacks, Gemini 2.0 Flash remains a
robust, fast, and cost-effective solution for LLM-powered
review analysis. It adds a layer of strategic, human-like
reasoning that enhances our automated sentiment and
clustering pipeline, making customer feedback more
interpretable and actionable for businesses.

7. Result and Discussion

7.1 Sentiment Classification Performance
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The first stage of the pipeline establishes a robust
foundation for downstream tasks through accurate and
reliable sentiment classification. Among the three
evaluated models, the fine-tuned RoBERTa transformer
achieved the strongest results, attaining 81.5% accuracy
and a macro-F1 score of 0.816 on the test set. These results
indicate the superior ability of pre-trained contextual
embeddings to capture subtle variations in sentiment
expression, especially in ambiguous or mixed-polarity

reviews. In comparison, the Bi-LSTM model achieved 77.6%

accuracy and the TF-IDF-based Logistic Regression
baseline reached 74.3%, confirming the performance gap
between shallow models and modern transformer-based
approaches.

Importantly, all models maintained negative-class recall
above 0.75, indicating consistent detection of user
dissatisfaction—a vital feature for risk mitigation in
customer experience workflows. The majority-vote
ensemble further improved model robustness by boosting
neutral-class F1 to 0.70, while maintaining overall
accuracy at 80.3%, thus balancing class-specific biases.
This ensembling strategy proves particularly useful in
production scenarios where sentiment distribution is non-
stationary or data drift is expected.

7.2 Sentiment Classification Performance

In the second stage, we focused on structuring customer
dissatisfaction via semantic clustering of 14,205 reviews
predicted as negative. A conventional TF-IDF + K-Means
baseline yielded weak topical separation, with low
silhouette scores (~0.04) and vague term-frequency-driven
clusters that lacked actionable specificity.

In contrast, our adopted BERTopic pipeline with MPNet
embeddings and topic reduction uncovered 25 distinct,
interpretable themes, including issues like logistics delays,
missing components, and premature breakage. These
clusters aligned well with common business pain points
and were validated via manual inspection, revealing greater
intra-cluster homogeneity and thematic clarity than
traditional clustering approaches. The use of contextual
embeddings played a key role in capturing semantic nuance,
while  the reduce topics()  function  improved
interpretability by merging redundant subclusters into
cohesive categories.

This phase bridges the gap between unstructured sentiment
and operational themes, enabling product managers and
CX teams to move from "what's wrong?" to "what kind of
issues are most frequent?"

7.3 LLM-Based Summary and Recommendation
Generation

The third and final stage of our pipeline bridges data
analytics with actionability. We employed Gemini 2.0
Flash, a fast and cost-effective generative LLM, to
synthesize each topic cluster into a concise summary and
generate actionable recommendations. For example,
clusters on "missing components" were paired with

suggestions like stricter outbound quality control, while
clusters on "fit issues" led to pre-purchase sizing guidance.

Evaluation across ten prompt iterations revealed high
consistency in generating root-cause summaries and
targeted interventions. The generated outputs were not only
coherent and domain-relevant but also concise enough to
be consumed by product or operations teams without
further curation. While the process still involves human
validation, Gemini significantly reduced turnaround time
and bridged the final step from detection to decision.

7.4 Operational Implications

Collectively, these results confirm that our pipeline fulfills
the primary technical goal ( = 80% accuracy in
classification) while also delivering on business needs. The
ensemble classifier can be seamlessly integrated into real-
time feedback monitoring dashboards, offering early alerts
for shifts in customer sentiment. Meanwhile, the 25-topic
map serves as a prioritized insight structure that enables
issue triaging, resource allocation, and strategic
intervention planning.

The pipeline not only quantifies sentiment but diagnoses its
root causes and suggests responses, offering organizations
a strategic advantage in customer experience optimization.
Its modular architecture ensures adaptability across
domains, while its empirical validation supports
deployment confidence in operational settings.

8. Limitations and Future Improvements

8.1 Model Accuracy & Data Sufficiency

While our fine-tuned RoBERTa classifier exceeded the 80%
accuracy threshold, its macro-F1 (0.816) and negative-
class recall (0.815) fall slightly below the ideal benchmarks
of 0.85-0.90 often cited in high-stakes industrial NLP
applications. A key limitation stems from the inherent
complexity of neutral reviews, which often exhibit subtle
sentiment signals, sarcasm, or mixed opinions. These are
harder to disambiguate even with advanced transformer
architectures.

To address this, future work should expand the dataset with
more diverse and ambiguous edge-case samples, especially
targeting underrepresented classes. Manual annotation of
borderline cases or semi-supervised bootstrapping using
weak labels could increase both coverage and label
consistency. From a modeling perspective, larger backbone
models like DeBERTa-v3-large or LLaMA-3 could be
explored to capture deeper linguistic nuance. Leveraging
gradient accumulation and mixed-precision training would
allow such architectures to be trained efficiently on
commodity GPUs. Additionally, synthetic data
augmentation via back-translation, adversarial rephrasing,
or LLM-generated paraphrases could increase robustness
by exposing models to wider sentiment expression
patterns..
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8.2 Topic-Model Robustness

Although BERTopic successfully surfaced 25 coherent
themes from over 14,205 negative reviews, its
unsupervised nature presents limitations in topic purity and
generalizability. Some low-frequency complaints were
grouped into overly generic "catch-all" clusters, which
hinders downstream interpretation. This is particularly
problematic in business contexts where prioritization
depends on theme specificity.

We propose the incorporation of cluster quality metrics
such as normalized mutual information (NMI), topic
coherence, and stability indices to quantitatively evaluate
cluster validity. Moreover, integrating human-in-the-loop
workflows—where analysts iteratively relabel or refine
topics—can bridge the gap between algorithmic output and
business semantics. Alternatively, semi-supervised models
such as Guided LDA or ZeroShotTopicModeling could be
explored to anchor clusters around predefined operational
categories (e.g., delivery delays, refund issues, safety
complaints).

8.3 LLM Evaluation & Cost Management

Gemini Flash showed strong performance in generating
meaningful summaries and actionable suggestions.
However, current evaluations are qualitative and subjective,
based on 10 rounds of manual inspection using informal
criteria. To ensure reproducibility and statistical rigor,
future work should design a lightweight annotation rubric,
involve dual annotators, and report inter-rater agreement
via Cohen’s Kappa.

In terms of cost-efficiency, reliance on a proprietary
platform (e.g., Gemini Flash) raises concerns of vendor
lock-in and scalability bottlenecks. = We recommend
benchmarking open-source alternatives such as Mistral-
7B-Instruct, LLaMA 3, or Mixtral, and experimenting with
parameter-efficient tuning methods like LoRA (Low-Rank
Adaptation). These techniques can enable custom fine-
tuning for domain-specific feedback (e.g., medical devices,
software reviews) at a fraction of the computational cost.

8.4 Domain & Language Generalisability

All experiments use English-language Amazon data;
performance may erode on multilingual or domain-specific
corpora such as hospitality or fintech reviews.
Cross-lingual sentence embeddings and domain-adaptive
pre-training—combined with language-aware sentiment
lexicons—are essential for broad deployment. A staged
rollout with shadow-mode monitoring can quantify drift
before full production release.

8.5 Explainability & Ethical Compliance

Lastly, the current system lacks model interpretability
mechanisms, which poses risks in decision transparency
and regulatory compliance. As NLP models grow in
complexity, understanding why a prediction was made
becomes crucial—especially in high-impact scenarios like
loan approval or medical diagnosis.

We propose the integration of token-level SHAP or LIME
visualizations to interpret ROBERTa ensemble decisions
and reveal feature attributions. Similarly, representative
review exemplars should accompany each discovered topic
to aid human interpretability. From a governance
standpoint, the pipeline must embed PII redaction, respect
user consent, and align with evolving Al regulations such
as the EU Al Act or Singapore’s PDPA. Fairness audits
across demographic subgroups and bias mitigation
pipelines should also be implemented.

In summary, by addressing these five areas—data diversity,
topic interpretability, LLM cost evaluation, domain
adaptability, and explainability—the current pipeline can
evolve into a production-grade, responsible NLP system
capable of delivering continuous improvements to
customer experience across industries and languages.

9. Conclusion

This study introduces a robust, end-to-end natural language
processing (NLP) framework designed to convert
unstructured customer feedback into actionable business
intelligence. The system adopts a three-stage pipeline—
sentiment classification, topic clustering, and large
language model (LLM)-based synthesis—that collectively
transforms raw textual reviews into strategic insights.
Leveraging a fine-tuned RoBERTa model, our pipeline
achieves high-accuracy sentiment analysis (81.5%) while
maintaining strong recall for negative sentiment—an
essential attribute for early identification of customer
dissatisfaction. Through BERTopic’s contextual clustering,
the framework uncovers 25 coherent and business-relevant
themes from over 15,000 negative reviews, enabling fine-
grained categorization of common customer complaints.
Finally, by deploying Gemini 2.0 Flash, the system
translates clusters into cluster-specific summaries and
tailored recommendations, thereby closing the loop from
detection to action.

Beyond individual component success, our results
highlight the synergistic advantage of combining classical,
deep learning, and generative Al models in a unified
architecture.  Contextual embeddings substantially
outperformed traditional feature-based methods, and
ensemble classification models delivered balanced
performance across sentiment categories—essential for
real-world deployment where sentiment distribution is
often imbalanced or ambiguous. LLM integration
introduced a novel layer of interpretability and decision
relevance, bridging data science with operations. This
human-like layer of synthesis transforms descriptive
analytics into prescriptive insights, enabling downstream
teams to act swiftly and confidently on user feedback.

While the framework is not without limitations—including
challenges in cross-domain generalization, evaluation
standardization, and explainability—it remains highly
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modular and extensible. The open-sourced codebase
supports transparency and reproducibility, and its plug-
and-play design allows for adaptation to different
industries, languages, and business objectives. As such,
this work serves as a foundational blueprint for
organizations seeking to operationalize customer feedback
analysis at scale. By automating the extraction of pain
points and generating prioritized actions, our approach
contributes to improving product quality, elevating service
standards, and ultimately enhancing customer satisfaction
in today’s competitive landscape.
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Appendix Figure A4. Text Length Distribution (Raw Sample)
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Figure A7. Sentiment Keyword Word Clouds (TF-IDF  Figure C1. Logistic Regression Test Results
Top Terms for Positive vs. Negative Reviews
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Figure C2. Bi-LSTM Test Results
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Figure D1. Elbow Method and Silhouette Score (TF-IDF

+ Title + Text)
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Figure D2. Elbow Method and Silhouette Score using
Sentence-BERT (MPNet)
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Figure D3. Top 10 Topics Extracted by BERTopic (After

Reduction)
» Top Topics Summary (After Reduction)
Topic Count Name \

0 -1 4296 -1_br_work_like_product
1 0 2709 0_book_br_br br_cd
2 1 999 1_app_work_br_charge
3 2 907 2_card_gift_gift card_box
4 3 794 3_small_size_br_fit
5 4 792 4_ink_print_paper_color
6 5 627 5_taste_flavor_coffee_br
7 6 385 6_hair_brush_skin_product
8 7 358 7_sound_ear_headphones_mask
9 8 357 8_magazine_subscription_ads_articles

Representation \

@ [br, work, like, product, use, just, don, mone...
1 [book, br, br br, cd, 34, star, just, like, ga...
2 [app, work, br, charge, battery, light, use, d...
3 [card, gift, gift card, box, amazon, cards, re...
4 [small, size, br, fit, shoes, wear, shirt, lik...
5 [ink, print, paper, color, pens, printer, tape...
6 [taste, flavor, coffee, br, filter, water, lik...
7 [hair, brush, skin, product, br, like, use, us...
8 [sound, ear, headphones, mask, ears, headset, ...
9 [magazine, subscription, ads, articles, issue,...

Representative_Docs
® [Well--I Don't Know--Maybe It's Right For Some...
1 [Rent it; don't buy it! I wanted to give it on...
2 [Total Garbage. Batteries and Charging Station...
3 [extremely disappointed at the customer servic...
4 [capris great, Leggings are a disappointment- ...
5 [Why Do I DO This To Myself? But Two Packs If...
6 [all of them taste so artifical horrible flavo...
7 [Not for thick hair This BEAUTYFYN Onion Hair ...
8 [So disappointed very muddy sound I am so disa...
9 [Good magazine but did not receive more than h...



