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Abstract  

This study presents a scalable NLP pipeline that 
transforms customer reviews into valuable 
insights through sentiment classification, topic 
clustering, and LLM-based summarization. Using 
a balanced Amazon Reviews dataset, a fine-tuned 
RoBERTa model achieved 81.5% accuracy in 
classification. Clustering of over 14,205 negative 
reviews using BERTopic with MPNet 
embeddings revealed 25 semantically coherent 
themes, such as delivery issues and product 
defects. Subsequently, Gemini 2.0 Flash, a high-
performance generative model was used to 
synthesize cluster-specific summaries and 
actionable business recommendations. 

1.  Introduction 

In today’s data-saturated digital environment, businesses 
across industries face an unprecedented volume of 
customer-generated content, particularly in the form of 
product reviews.  These reviews—distributed across 
platforms like Amazon, social media, and brand 
websites—contain rich sentiment, behavioral cues, and 
product-related feedback.  However, due to their 
unstructured and heterogeneous nature, systematically 
extracting insights from such data remains a persistent 
challenge.  The diversity in writing styles, use of informal 
language, and presence of domain-specific vocabulary 
further complicate the task of interpretation, making 
manual analysis both time-consuming and infeasible at 
scale. 

This project aims to address these challenges by designing 
and implementing an end-to-end Natural Language 
Processing (NLP) pipeline that harnesses recent 
advancements in machine learning and large language 
models (LLMs).  Our objective is not only to automate the 
sentiment classification of customer reviews into positive, 
neutral, and negative categories but also to mine deeper 
insights from negative feedback—traditionally the most 
informative yet complex to interpret.  By clustering 

————— 
Preliminary work. Do not distribute. 

reviews with similar complaints and leveraging LLMs for 
summarization and recommendation generation, we aim to 
close the loop between passive sentiment detection and 
proactive business response. 

The proposed solution is structured as a three-stage 
pipeline.  First, it performs supervised sentiment 
classification to establish a high-accuracy foundation for 
downstream analysis.  Second, it applies semantic 
clustering (via BERTopic) to group negative reviews into 
thematically coherent categories, surfacing dominant pain 
points and emergent issues.  Third, it uses generative LLMs 
(Gemini 2.0 Flash) to synthesize cluster-specific 
summaries and generate actionable suggestions—bridging 
the gap between descriptive analytics and operational 
strategy. 

This automated approach offers significant advantages 
over traditional feedback management systems.  It enables 
businesses to monitor trends in real-time, prioritize high-
impact issues, and act quickly on root causes, thereby 
improving product design, customer service protocols, and 
overall consumer satisfaction.  More importantly, by 
systematically identifying patterns across thousands of user 
reviews, the pipeline supports strategic decision-making, 
enhances brand trust, and reinforces competitive 
differentiation in increasingly customer-centric markets. 

2.  Dataset & Exploratory Overview  

The dataset used in this project originates from the 
McAuley Lab’s Amazon Reviews 2023 corpus, a large-
scale resource containing millions of user-generated 
reviews across a diverse range of product categories 
(McAuley Lab, 2023). For exploratory analysis, a 100,000-
record sample was randomly drawn from the 
raw_review_* configurations, with each record containing 
review metadata (e.g., rating, title, helpful vote count) and 
review content. To ensure class parity for model training 
and evaluation, a balanced dataset was constructed by 
stratified sampling, selecting 1,000 reviews per sentiment 
class (positive, neutral, negative) across 34 source files. 
This process resulted in a balanced dataset of 102,000 
records—closely matching the size of the original raw 
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sample—while mitigating sentiment bias and preserving 
category diversity.  

2.1 Sentiment Distribution 

The raw dataset exhibits a class imbalance typical of real-
world feedback, with ~74% positive, ~18% negative, and 
~9% neutral reviews. To prevent class dominance in model 
learning, a balanced set was constructed by enforcing equal 
sample sizes across sentiment categories (Appendix A). 

2.2 Text Length Distribution 

Both raw and balanced datasets reveal a right-skewed 
distribution, with most reviews under 500 characters and a 
long tail extending beyond 3,000 characters. This 
necessitates token truncation, particularly for models 
constrained by input sequence lengths such as transformers. 

2.3 Helpful Votes by Sentiment 

Although positive reviews are more prevalent, negative 
reviews often accrue higher median helpfulness scores. 
This pattern suggests that critical feedback may be 
perceived as more informative by other users (Appendix 
A). 

2.4 Keyword Analysis via TF-IDF & Word Clouds 

TF-IDF and word cloud visualizations reveal semantic 
divergence by sentiment. Positive reviews frequently 
contain affirmatives such as “great,” “love,” and “easy,” 
whereas negative reviews are marked by terms like “waste,” 
“broke,” and “disappointed” (Appendix A). These lexical 
signals validate the viability of sentiment classification via 
supervised learning. 

3.  Data Preprocessing 

Data preparation proceeded in stages to ensure integrity, 
balance, and compatibility with machine learning models. 
We streamed data from the Hugging Face version of the 
Amazon Reviews 2023 dataset (McAuley-Lab, 2023), 
selecting all records under the raw_review_* configuration. 
Reviews were assigned sentiment labels based on star 
ratings: 1–2 as negative, 3 as neutral, and 4–5 as positive. 
From each source file, a maximum of 5,000 reviews per 
class were extracted to ensure both computational 
feasibility and representativeness.  

To construct a modeling-ready dataset, we then cleaned the 
balanced dataset. Entries lacking either the title, text, or 
sentiment fields were excluded. Each review was formed 
by concatenating the title and main review text into a single 
input string. Sentiments were encoded numerically using a 
manual mapping dictionary, assigning 0 to ‘negative’, 1 to 
‘neutral’, and 2 to ‘positive’. Finally, a unique review_id 
was generated for each row to maintain alignment across 
models and facilitate traceability in ensemble evaluation. 

We explored several text-cleaning strategies, including 
HTML tag removal and stopword filtering using NLTK. 
Although this approach enhanced keyword clarity during 

exploratory analysis (e.g., for TF-IDF and word clouds), 
we deliberately excluded stopword filtering from the 
model pipelines, as it risked removing negators like “not” 
that are critical to sentiment polarity (Jindal & Liu, 2008). 
Thus, stopword cleaning was retained for insight 
generation, not feature learning. 

4.  Sentiment Analysis 

4.1 Model Selection and Justification 

To capture the varying complexity and expressive power 
of sentiment-bearing text, we implemented three 
complementary models across classical, deep, and 
transformer-based paradigms, followed by an ensemble 
voting system for improved generalization. 

Logistic Regression served as our classical baseline. It is 
fast, interpretable, and works effectively with TF-IDF 
features, making it ideal for benchmarking before 
transitioning to more sophisticated architectures. 

Bi-LSTM with RoBERTa Embeddings was introduced as 
our deep learning solution. By combining pre-trained 
transformer embeddings with recurrent sequence modeling, 
this architecture balances expressiveness and training 
efficiency while being able to capture sequential 
dependencies in the review text. 

Fine-tuned RoBERTa Transformer represents the state-of-
the-art approach via transfer learning. We leveraged the 
HuggingFace roberta-base checkpoint with a classification 
head trained on our labeled dataset. The model jointly 
learns task-specific representations with large-scale 
language knowledge, achieving strong generalization with 
minimal tuning. 

Each model relied on tokenized input representations: TF-
IDF vectorization for the logistic regression model, 
RoBERTa token embeddings for the Bi-LSTM, and 
Hugging Face’s AutoTokenizer for the transformer. For the 
transformer model, we applied a maximum length of 512 
tokens with truncation, attention masks, and dynamic 
padding. 

Finally, we implemented a majority voting ensemble 
across all three models (Sagi & Rokach, 2018). This step 
aims to capitalize on the strength of each model while 
smoothing out individual prediction biases. 

This layered model design provides a rigorous evaluation 
of sentiment classification methods while offering insight 
into tradeoffs between accuracy, interpretability, and 
scalability. 

4.2 Training and Tuning 

All models used a consistent, stratified 80/10/10 split 
across training, validation, and test sets, totaling 102,000 
reviews from a manually balanced dataset (3,000 samples 
per sentiment across 34 source files). This ensured 
consistent evaluation and prevented data leakage. 
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TF-IDF for Classical Models: Logistic Regression used a 
combination of TF-IDF features extracted separately from 
review titles and texts. Title features were capped at 3,000 
dimensions and text features at 5,000. 

Feature matrices were horizontally concatenated and fed 
into scikit-learn’s LogisticRegression with max_iter=1000. 
No deep tokenization or embeddings were used for this 
model  

Bi-LSTM with RoBERTa Tokenization: For the Bi-LSTM, 
we concatenated titles and texts and tokenized them using 
the RoBERTa tokenizer with truncation to 64 tokens and 
padding. Tokenized pairs were passed through a frozen 
RoBERTa encoder followed by a bidirectional LSTM 
(hidden size = 128 per direction). A dense layer projected 
the final hidden states to the sentiment logits. Early 
stopping based on validation macro F1 was employed, 
terminating training after 4 epochs. 

Transformer Fine-Tuning: We fine-tuned the full Roberta-
base transformer model using HuggingFace’s Trainer API. 
Tokenization followed the same process as above, but with 
a maximum sequence length of 512 tokens. We used a 
batch size of 16, a learning rate of 1e-5, and a weight decay 
of 0.05. Training ran for up to 5 epochs with early stopping 
enabled (patience = 2). Validation was conducted every 
epoch, and the best model checkpoint was restored for test 
evaluation. 

Ensemble via Majority Voting: Each model generated 
prediction files with review_id, true_label, and predicted 
labels. These were merged on review_id, and the final 
ensemble label was assigned via majority voting among the 
three models. This approach retained model independence 
while improving overall robustness. 

4.3 Evaluation 

Although positive reviews are more prevalent, negative 
reviews often accrue higher median helpfulness scores. 
This pattern suggests that critical feedback may be 
perceived as more informative by other users (Appendix 
A). 

Model performance was assessed using accuracy, macro-
averaged F1, and negative-class recall, reflecting both 
overall performance and ability to detect problematic 
reviews. 

Logistic Regression achieved 74.3% accuracy and 0.742 
macro F1, with a negative recall of 0.758. It performed best 
on the positive class but struggled with neutral sentiment, 
reflecting the limitations of sparse features in capturing 
nuanced expression. 

Bi-LSTM improved to 77.6% accuracy and 0.775 macro 
F1, with a slight gain in negative recall (0.773). The 
recurrent architecture enabled better sequence modeling, 
especially for longer reviews. However, training was more 
time-consuming and required tuning the embedding 
truncation length to avoid GPU memory overflow. 

Transformer (Fine-tuned RoBERTa) achieved the highest 
standalone performance with 81.5% accuracy, 0.816 macro 
F1, and 0.815 negative recall. RoBERTa’s pre-trained 
contextual embeddings proved highly effective in 
distinguishing sentiment nuances, particularly improving 
neutral-class classification (precision = 0.82, recall = 0.81). 
This model’s success confirms the value of transfer 
learning for language understanding tasks. 

Majority Voting Ensemble offered balanced performance 
across all classes, achieving 80.3% accuracy and 0.800 
macro F1. Although it did not outperform RoBERTa in 
absolute terms, it reduced variance across classes. For 
instance, neutral-class F1 improved from 0.67 (LSTM) and 
0.64 (Logistic) to 0.70 in the ensemble (Appendix C). 
Negative recall also remained high (0.79), indicating 
effective identification of dissatisfaction. 

The ensemble thus emerges as a stable and interpretable 
deployment choice, even when individual model 
performances fluctuate across subsets. 

4.4 Insights and Impact 

The sentiment classification results highlight several 
practical and theoretical contributions. Among the models, 
the fine-tuned RoBERTa transformer consistently 
achieved the highest performance, demonstrating the 
advantage of pre-trained language representations in 
understanding user-generated content. Its strength lies in 
capturing context and subtle sentiment cues, especially in 
ambiguous or mixed reviews. 

Despite being a simpler model, Logistic Regression 
delivered reasonable performance and offered advantages 
in speed and interpretability. This makes it suitable for 
constrained environments or early-stage prototyping. The 
Bi-LSTM model, combining deep learning with RoBERTa 
embeddings, balanced efficiency with improved recall, 
particularly for underrepresented sentiments. 

A key insight is the consistent ability of all models to detect 
negative sentiment, with negative recall exceeding 0.75. In 
practical settings, this supports early flagging of user 
dissatisfaction and helps guide interventions such as 
customer support or quality control. 

The structured prediction format—based on unique review 
identifiers and standardized text fields—enables easy 
integration into real-world applications. Examples include 
automated feedback monitoring, alert systems, or input for 
recommender engines. While this study did not incorporate 
explainability tools, the current framework is compatible 
with SHAP or LIME, which could enhance transparency in 
future work (Ribeiro et al., 2016). 

Together, these findings support the use of sentiment 
models as a scalable, adaptable tool for consumer insight 
and review moderation. 

5.  Clustering Negative Reviews 
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5.1 Feature Engineering 

To explore recurring themes in customer dissatisfaction, 
we utilized a dataset of over 14,205 product reviews that 
had been predicted as negative by the Majority Voting 
Ensemble sentiment classifier. Each review contained a 
title and text field, which were concatenated into a single 
text_combined field after standard preprocessing. 

During the feature engineering phase, we experimented 
with different representations of review content. We 
applied TF-IDF vectorization separately on title, text, and 
their combination. Each version was evaluated as input for 
clustering, with the goal of identifying which encoding best 
preserved topic-level distinctions. We used standard TF-
IDF parameters (min_df=5, max_df=0.9) and applied 
KMeans to assess clustering quality. The best-performing 
representation from this approach—TF-IDF on combined 
title + text—was used as a baseline before exploring 
embedding-based methods. 

5.2 Methods Explored 

We evaluated three major clustering strategies to group the 
transformer-predicted negative product reviews into 
semantically coherent themes (Table 1).  These methods 
were compared in terms of clustering quality, 
interpretability, and practical usability. 

Our baseline approach used TF-IDF vectorization 
combined with KMeans clustering.  We experimented with 
different text inputs, including text alone, title alone, and a 
concatenated title + text format.  Each representation was 
vectorized using standard TF-IDF parameters and clustered 
across a range of values for K (from 2 to 14).  The best-
performing setup was based on the combined title + text 
input, which offered marginally better separation than text 
alone.  However, the Silhouette Scores remained low—
with a maximum of only ~0.016—indicating weak cluster 
boundaries.  Furthermore, the resulting clusters were often 
dominated by high-frequency, generic words such as 
"product," "not," or "use", and failed to capture meaningful 
semantic themes.  Despite attempts to tune vectorization 
thresholds or apply dimensionality reduction via SVD, the 

TF-IDF based clusters lacked both depth and 
interpretability. 

To improve semantic representation, we transitioned to 
embedding-based clustering using Sentence-BERT models, 
specifically all-MiniLM-L6-v2 and all-mpnet-base-v2 
from the SentenceTransformers library.  These models 
encode full sentences into dense, contextual embeddings 
that better preserve the underlying meaning of review text.  
KMeans was then applied to these embeddings.  Compared 
to TF-IDF, this approach provided modestly improved 
cohesion in clustering, as reflected by slightly higher 
Silhouette Scores (up to ~0.039).  However, due to the high 
dimensionality and lack of inherent explainability in the 
clusters, it remained difficult to interpret the output.  
Without a mechanism to extract representative keywords 
or summarize clusters, this method lacked practical clarity 
and was not well suited for human labeling or business 
analysis. 

The most effective approach was BERTopic, applied with 
all-mpnet-base-v2 as the embedding model.  BERTopic 
leverages sentence-level contextual embeddings to group 
semantically similar reviews, and it automatically 
generates interpretable topic descriptors by extracting top 
keywords per cluster.  Importantly, we used BERTopic's 
reduce_topics() function to merge semantically 
overlapping clusters and constrain the final output to 25 
distinct topics.  This not only simplified the output but also 
significantly improved the interpretability, distinctiveness, 
and coherence of each topic.  Unlike earlier methods, 
BERTopic provided a clear representation of each cluster's 
thematic focus—for instance, delivery delays, refund 
issues, product defects, or customer service problems—
along with representative sample reviews.  As a result, this 
approach proved highly effective and was selected as our 
final clustering method. 

5.3 Final Choice and Justification 

After systematically evaluating all clustering approaches, 
we ultimately selected BERTopic with MPNet embeddings, 
combined with topic reduction to 25 themes, as our final 
and most effective method.  This decision was grounded in 

Table 1. Method Explored 

Method Embedding / 
Vectorization Clustering Model Silhouette 

Score Result 

TF-IDF  +  KMeans TF-IDF KMeans ~0.016 
Basic separation; generic, 

hard-to-label topics 

BERT Embedding + 
KMeans 

Sentence 
Transformer 

(MPNet) 
KMeans ~0.039 Semantically improved; 

low interpretability 

BERTopic (MPNet, 
Reduced) 

MPNet 
Contextual 
Embedding 

BERTopic N/A 
(qualitative) 

Final method; clear themes 
and useful outputs 
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both qualitative and structural advantages observed during 
the analysis. 

In contrast to KMeans, which suffered from the sparsity of 
TF-IDF vectors and struggled to form semantically 
meaningful clusters, BERTopic successfully leveraged 
contextual sentence embeddings to identify nuanced 
semantic patterns across the review corpus.  These 
embeddings captured deeper relationships between 
reviews that shared similar sentiment or subject matter, 
even when the surface vocabulary differed.  As a result, 
clusters generated by BERTopic exhibited substantially 
better cohesion, with topics that were not only more 
compact but also more interpretable. 

To further enhance clarity and reduce noise, we applied 
BERTopic's built-in reduce_topics() function, which 
merged semantically overlapping clusters based on 
distance in embedding space.  This step yielded a clean and 
distinct set of 25 topics, eliminating redundancy without 
losing topical diversity.  Each topic was summarized by its 
top-ranked keywords and linked to a representative 
review—the most confidently assigned sample—providing 
a strong anchor for human interpretation and business 
application. 

This final output addressed the core limitations observed in 
previous methods: 

• It resolved the high-dimensional noise and generic 
term dominance seen in TF-IDF + KMeans; 

• It improved interpretability through automated topic 
labeling; 

•  It delivered insights that closely aligned with real-
world customer pain points, including issues related 
to product quality, delivery problems, misleading 
descriptions, and refund experiences. 

Moreover, the structure of BERTopic’s output made it well 
suited for downstream applications such as manual 
labeling, issue tracking, customer support optimization, 
and even LLM prompt construction.  By combining 
semantic depth with practical interpretability, BERTopic 
ultimately provided the most valuable foundation for 
clustering negative product reviews in our analysis. 

6.  LLM Interpretation & Recommendation 

6.1 LLM Model Selection 

We selected Gemini 2.0 Flash from Google’s Generative 
AI suite to generate tailored business insights from 
clustered negative reviews, based on its strong alignment 
with our operational needs. First, it offers exceptional 
speed and cost-efficiency, making it well-suited for 
scalable, production-level deployments. Second, the model 
excels at prompt-driven tasks such as summarization, root 
cause analysis, and recommendation generation, 
consistently producing structured and business-relevant 
outputs that require minimal post-processing. Most 

importantly, Gemini Flash demonstrates a high degree of 
consistency with minimal hallucination, ensuring that the 
insights derived from customer feedback remain factually 
grounded and actionable. By choosing Gemini, we 
achieved an effective balance between latency, output 
quality, reliability, and cost—key pillars for a robust and 
scalable customer insights platform. 

6.2 Prompt Engineering 

Our system sends a representative sample (20 reviews per 
cluster) to Gemini along with structured instructions. The 
prompt is started with concise instruction, and changes 
iteratively based on the result. Although we thought about 
giving a few shot examples, as the identified cluster might 
be different every time, we decided to not give examples 
and keep the instruction simple and concise.  

Final prompt is as below:  

""" You are an experienced customer success expert. Based 
on the information provided below, do the following: 1. 
Provide a concise summary of what the negative feedback 
is mainly about. 2. For each of the categories provided, 
provide potential root cause and short recommendation to 
address the issue. Be clear and concise. input: {input_json} 
""". 

6.3 Performance & Evaluation 

The performance of Gemini 2.0 Flash was manually 
evaluated by comparing its outputs against the original 
review clusters. The evaluation focused on three key 
aspects: relevance, actionability, and consistency. 
Specifically, we checked whether the generated summaries 
accurately reflected the main issues within each cluster, 
whether the recommendations were practical and could 
inform real business decisions, and whether the responses 
were coherent and non-repetitive across clusters.  

After conducting ten rounds of testing, we observed that 
the model consistently identified core pain points—such as 
missing parts, product defects, or size mismatches—and 
translated them into actionable suggestions like quality 
control improvements or packaging enhancements.  

However, we also noted some limitations. In a few cases, 
the output included vague or overly generalized statements, 
and the overall quality of recommendations proved highly 
dependent on the diversity and richness of the input 
reviews.  

Despite these drawbacks, Gemini 2.0 Flash remains a 
robust, fast, and cost-effective   solution for LLM-powered 
review analysis. It adds a layer of strategic, human-like 
reasoning that enhances our automated sentiment and 
clustering pipeline, making customer feedback more 
interpretable and actionable for businesses. 

7.  Result and Discussion 

7.1 Sentiment Classification Performance 
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The first stage of the pipeline establishes a robust 
foundation for downstream tasks through accurate and 
reliable sentiment classification. Among the three 
evaluated models, the fine-tuned RoBERTa transformer 
achieved the strongest results, attaining 81.5% accuracy 
and a macro-F1 score of 0.816 on the test set. These results 
indicate the superior ability of pre-trained contextual 
embeddings to capture subtle variations in sentiment 
expression, especially in ambiguous or mixed-polarity 
reviews. In comparison, the Bi-LSTM model achieved 77.6% 
accuracy and the TF-IDF-based Logistic Regression 
baseline reached 74.3%, confirming the performance gap 
between shallow models and modern transformer-based 
approaches. 

Importantly, all models maintained negative-class recall 
above 0.75, indicating consistent detection of user 
dissatisfaction—a vital feature for risk mitigation in 
customer experience workflows. The majority-vote 
ensemble further improved model robustness by boosting 
neutral-class F1 to 0.70, while maintaining overall 
accuracy at 80.3%, thus balancing class-specific biases. 
This ensembling strategy proves particularly useful in 
production scenarios where sentiment distribution is non-
stationary or data drift is expected.  

7.2 Sentiment Classification Performance 

In the second stage, we focused on structuring customer 
dissatisfaction via semantic clustering of 14,205 reviews 
predicted as negative.  A conventional TF-IDF + K-Means 
baseline yielded weak topical separation, with low 
silhouette scores (~0.04) and vague term-frequency-driven 
clusters that lacked actionable specificity. 

In contrast, our adopted BERTopic pipeline with MPNet 
embeddings and topic reduction uncovered 25 distinct, 
interpretable themes, including issues like logistics delays, 
missing components, and premature breakage.  These 
clusters aligned well with common business pain points 
and were validated via manual inspection, revealing greater 
intra-cluster homogeneity and thematic clarity than 
traditional clustering approaches.  The use of contextual 
embeddings played a key role in capturing semantic nuance, 
while the reduce_topics() function improved 
interpretability by merging redundant subclusters into 
cohesive categories. 

This phase bridges the gap between unstructured sentiment 
and operational themes, enabling product managers and 
CX teams to move from "what's wrong?" to "what kind of 
issues are most frequent?"  

7.3 LLM-Based Summary and Recommendation 
Generation 

The third and final stage of our pipeline bridges data 
analytics with actionability. We employed Gemini 2.0 
Flash, a fast and cost-effective generative LLM, to 
synthesize each topic cluster into a concise summary and 
generate actionable recommendations. For example, 
clusters on "missing components" were paired with 

suggestions like stricter outbound quality control, while 
clusters on "fit issues" led to pre-purchase sizing guidance. 

Evaluation across ten prompt iterations revealed high 
consistency in generating root-cause summaries and 
targeted interventions. The generated outputs were not only 
coherent and domain-relevant but also concise enough to 
be consumed by product or operations teams without 
further curation. While the process still involves human 
validation, Gemini significantly reduced turnaround time 
and bridged the final step from detection to decision. 

7.4 Operational Implications 

Collectively, these results confirm that our pipeline fulfills 
the primary technical goal ( ≥  80% accuracy in 
classification) while also delivering on business needs. The 
ensemble classifier can be seamlessly integrated into real-
time feedback monitoring dashboards, offering early alerts 
for shifts in customer sentiment. Meanwhile, the 25-topic 
map serves as a prioritized insight structure that enables 
issue triaging, resource allocation, and strategic 
intervention planning. 

The pipeline not only quantifies sentiment but diagnoses its 
root causes and suggests responses, offering organizations 
a strategic advantage in customer experience optimization. 
Its modular architecture ensures adaptability across 
domains, while its empirical validation supports 
deployment confidence in operational settings. 

8.  Limitations and Future Improvements 

8.1 Model Accuracy & Data Sufficiency 

While our fine-tuned RoBERTa classifier exceeded the 80% 
accuracy threshold, its macro-F1 (0.816) and negative-
class recall (0.815) fall slightly below the ideal benchmarks 
of 0.85–0.90 often cited in high-stakes industrial NLP 
applications. A key limitation stems from the inherent 
complexity of neutral reviews, which often exhibit subtle 
sentiment signals, sarcasm, or mixed opinions. These are 
harder to disambiguate even with advanced transformer 
architectures. 

To address this, future work should expand the dataset with 
more diverse and ambiguous edge-case samples, especially 
targeting underrepresented classes. Manual annotation of 
borderline cases or semi-supervised bootstrapping using 
weak labels could increase both coverage and label 
consistency. From a modeling perspective, larger backbone 
models like DeBERTa-v3-large or LLaMA-3 could be 
explored to capture deeper linguistic nuance. Leveraging 
gradient accumulation and mixed-precision training would 
allow such architectures to be trained efficiently on 
commodity GPUs. Additionally, synthetic data 
augmentation via back-translation, adversarial rephrasing, 
or LLM-generated paraphrases could increase robustness 
by exposing models to wider sentiment expression 
patterns.. 
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8.2 Topic‑Model Robustness 

Although BERTopic successfully surfaced 25 coherent 
themes from over 14,205 negative reviews, its 
unsupervised nature presents limitations in topic purity and 
generalizability. Some low-frequency complaints were 
grouped into overly generic "catch-all" clusters, which 
hinders downstream interpretation. This is particularly 
problematic in business contexts where prioritization 
depends on theme specificity. 

We propose the incorporation of cluster quality metrics 
such as normalized mutual information (NMI), topic 
coherence, and stability indices to quantitatively evaluate 
cluster validity. Moreover, integrating human-in-the-loop 
workflows—where analysts iteratively relabel or refine 
topics—can bridge the gap between algorithmic output and 
business semantics. Alternatively, semi-supervised models 
such as Guided LDA or ZeroShotTopicModeling could be 
explored to anchor clusters around predefined operational 
categories (e.g., delivery delays, refund issues, safety 
complaints). 

8.3 LLM Evaluation & Cost Management 

Gemini Flash showed strong performance in generating 
meaningful summaries and actionable suggestions.  
However, current evaluations are qualitative and subjective, 
based on 10 rounds of manual inspection using informal 
criteria.  To ensure reproducibility and statistical rigor, 
future work should design a lightweight annotation rubric, 
involve dual annotators, and report inter-rater agreement 
via Cohen’s Kappa. 

In terms of cost-efficiency, reliance on a proprietary 
platform (e.g., Gemini Flash) raises concerns of vendor 
lock-in and scalability bottlenecks.  We recommend 
benchmarking open-source alternatives such as Mistral-
7B-Instruct, LLaMA 3, or Mixtral, and experimenting with 
parameter-efficient tuning methods like LoRA (Low-Rank 
Adaptation).  These techniques can enable custom fine-
tuning for domain-specific feedback (e.g., medical devices, 
software reviews) at a fraction of the computational cost. 

8.4 Domain & Language Generalisability 

All experiments use English‑language Amazon data; 
performance may erode on multilingual or domain‑specific 
corpora such as hospitality or fintech reviews. 
Cross‑lingual sentence embeddings and domain‑adaptive 
pre‑training—combined with language‑aware sentiment 
lexicons—are essential for broad deployment. A staged 
rollout with shadow‑mode monitoring can quantify drift 
before full production release. 

8.5 Explainability & Ethical Compliance 

Lastly, the current system lacks model interpretability 
mechanisms, which poses risks in decision transparency 
and regulatory compliance. As NLP models grow in 
complexity, understanding why a prediction was made 
becomes crucial—especially in high-impact scenarios like 
loan approval or medical diagnosis. 

 

We propose the integration of token-level SHAP or LIME 
visualizations to interpret RoBERTa ensemble decisions 
and reveal feature attributions. Similarly, representative 
review exemplars should accompany each discovered topic 
to aid human interpretability. From a governance 
standpoint, the pipeline must embed PII redaction, respect 
user consent, and align with evolving AI regulations such 
as the EU AI Act or Singapore’s PDPA. Fairness audits 
across demographic subgroups and bias mitigation 
pipelines should also be implemented. 

In summary, by addressing these five areas—data diversity, 
topic interpretability, LLM cost evaluation, domain 
adaptability, and explainability—the current pipeline can 
evolve into a production-grade, responsible NLP system 
capable of delivering continuous improvements to 
customer experience across industries and languages. 

9.  Conclusion 

This study introduces a robust, end-to-end natural language 
processing (NLP) framework designed to convert 
unstructured customer feedback into actionable business 
intelligence. The system adopts a three-stage pipeline—
sentiment classification, topic clustering, and large 
language model (LLM)-based synthesis—that collectively 
transforms raw textual reviews into strategic insights. 
Leveraging a fine-tuned RoBERTa model, our pipeline 
achieves high-accuracy sentiment analysis (81.5%) while 
maintaining strong recall for negative sentiment—an 
essential attribute for early identification of customer 
dissatisfaction. Through BERTopic’s contextual clustering, 
the framework uncovers 25 coherent and business-relevant 
themes from over 15,000 negative reviews, enabling fine-
grained categorization of common customer complaints. 
Finally, by deploying Gemini 2.0 Flash, the system 
translates clusters into cluster-specific summaries and 
tailored recommendations, thereby closing the loop from 
detection to action. 

Beyond individual component success, our results 
highlight the synergistic advantage of combining classical, 
deep learning, and generative AI models in a unified 
architecture. Contextual embeddings substantially 
outperformed traditional feature-based methods, and 
ensemble classification models delivered balanced 
performance across sentiment categories—essential for 
real-world deployment where sentiment distribution is 
often imbalanced or ambiguous. LLM integration 
introduced a novel layer of interpretability and decision 
relevance, bridging data science with operations. This 
human-like layer of synthesis transforms descriptive 
analytics into prescriptive insights, enabling downstream 
teams to act swiftly and confidently on user feedback. 

While the framework is not without limitations—including 
challenges in cross-domain generalization, evaluation 
standardization, and explainability—it remains highly 
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modular and extensible. The open-sourced codebase 
supports transparency and reproducibility, and its plug-
and-play design allows for adaptation to different 
industries, languages, and business objectives. As such, 
this work serves as a foundational blueprint for 
organizations seeking to operationalize customer feedback 
analysis at scale. By automating the extraction of pain 
points and generating prioritized actions, our approach 
contributes to improving product quality, elevating service 
standards, and ultimately enhancing customer satisfaction 
in today’s competitive landscape. 
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Appendix 
Figure A1. Sentiment Distribution (Raw Sample) 

Figure A2. Sentiment Distribution in Balanced Dataset 

 

 

Figure A3. Sentiment Distribution: Raw Sample vs. 
Balanced Dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A4. Text Length Distribution (Raw Sample) 

 

Figure A5. Text Length Distribution (Balanced Dataset) 

 

Figure A6. Helpful Votes Distribution by Sentiment (Log 
Scale, Raw Sample) 
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Figure A7. Sentiment Keyword Word Clouds (TF-IDF 
Top Terms for Positive vs. Negative Reviews 

Figure B1. Tokenizer implementation using the Hugging 
Face AutoTokenizer with truncation to 512 tokens and 
padding to maximum sequence length across all 
train/val/test splits. 

Figure B2. Sentiment Label Encoding Mapping for Model 
Compatibility 

Figure B3. Dataset Split into Train/Validation/Test using 
Hugging Face Dataset API 

 

 

 

 

 

 

 

Figure C1. Logistic Regression Test Results 

Figure C2. Bi-LSTM Test Results 

 

Figure C3. Majority Voting Ensemble Test Results 
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Figure D1. Elbow Method and Silhouette Score (TF-IDF 
+ Title + Text) 

Figure D2. Elbow Method and Silhouette Score using 
Sentence-BERT (MPNet) 

Figure D3. Top 10 Topics Extracted by BERTopic (After 
Reduction) 

 


