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Abstract
This project predicts MBTI types from writ-
tentext. Using data from Kaggle and Alibaba
Cloud’sTianchi platform, we explored several
models in-cluding Logistic Regression, BERT,
RoBERTaand T5, testing both direct 16-class clas-
sificationand multi-binary classification. Our re-
sults re-vealed that BERT with 16-class classifica-
tion per-formed best. RoBERTa showed compa-
rable re-sults but was more sensitive to data qual-
ity andhyperparameters, while T5’s generative
approachwas less effective. The BERT 16-class
model wasthen deployed via an APl through Hug-
ging Face,enabling real-time MBTI predictions
based onuser text.

1. Introduction
In contemporary society, the need for self-understanding
and personality insights has grown. Individuals seek to rec-
ognize their behavioral patterns, emotional responses, and
interaction styles to make better decisions in areas like ca-
reer, relationships, and personal growth. The Myers-Briggs
Type Indicator (MBTI) is one of the most widely used tools
for personality assessment, categorizing individuals into 16
personality types based on four dimensions: Extraversion
(E) vs. Introversion (I), Intuition (N) vs. Sensing (S), Think-
ing (T) vs. Feeling (F), and Judging (J) vs. Perceiving (P).
Each type, such as INFP or ESTJ, reflects the cognitive and
decision-making preferences of an individual.

However, traditional MBTI assessments rely on self-
reported questionnaires, which can be biased by the re-
spondent’s emotional state or self-perception, limiting their
real-world accuracy. To address this, our project proposes a
language-based personality prediction system that provides
dynamic, context-aware insights. We start with a baseline
Logistic Regression model and then fine-tune a pre-trained
BERT model for improved performance. We also explore
other models to enhance results. In addition to predicting
the overall 16 MBTI types, we treat the four personality
dimensions (E/I, N/S, T/F, J/P) as separate binary classifica-
tion tasks, training four additional models for comparative
analysis. Finally, we deploy an API for the best-performing
16-type classification model, allowing users to input text and

receive real-time MBTI predictions. This approach lever-
ages the real-time analytical power of language models to
offer a more dynamic and practical alternative to traditional
MBTI assessments.

2. Business Value
This project creates substantial business value through data-
driven decision-making in three core areas: recruitment,
customer engagement, and team optimization. For recruit-
ment, HR professionals can leverage the MBTI prediction
API to assess candidates’ personality traits by analyzing
their written responses like self-introductions or answers
to open-ended questions. The API’s language pattern anal-
ysis offers valuable insights into work styles and cultural
fit, resulting in better hiring decisions, improved role align-
ment, and lower turnover. In customer operations, integrat-
ing the API enables more personalized interactions. By
analyzing customer inputs from feedback, chats, or sur-
veys, businesses can identify personality preferences and
adjust their communication approach accordingly—whether
factual or emotional—to boost satisfaction, loyalty, and
conversions. For team management, the API evaluates per-
sonality types through members’ written input, including
self-assessments and collaboration experiences. These in-
sights help managers build balanced teams, combine com-
plementary strengths, and reduce conflicts, creating more
productive work environments.

Across these applications, personality analytics delivers
measurable improvements in hiring quality, customer re-
lations, and team performance, driving long-term organiza-
tional success through intelligent, data-supported strategies.

3. Data Collection and Preprocessing
3.1. Data Description

We leverage two complementary data sources to build a
robust MBTI classification model. Our primary dataset is
the Kaggle “MBTI Personality Type Twitter Dataset” com-
prising 7,800 user samples; each record contains an MBTI
label (four-letter code) and the user’s historical tweets de-
limited by “|||”. To mitigate overfitting due to limited
Twitter data, we incorporate a secondary corpus from Al-
ibaba Cloud’s Tianchi platform, drawn from the Personality-
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Cafe forum and containing over 8,600 similarly structured
samples.

3.2. Data Preprocessing & EDA

Data preprocessing began with rigorous cleaning and nor-
malization to ensure consistency across both sources. We
first removed all records containing null values and stan-
dardized MBTI labels (lowercased, four-letter codes) so that
Kaggle and Tianchi data adhere to an identical format. To
facilitate embedding and mitigate bias toward users with
extensive posting histories, we exploded each multi-post
record into individual entries, each comprising a single post
and its associated MBTI label.

All text was then lowercased and cleaned via regular expres-
sions: HTML tags, URLs, user mentions, hashtags, emojis,
and extraneous whitespace were stripped, while alphanu-
meric characters and essential punctuation were retained.
After merging the two datasets, exploratory visualizations
(label distribution bar charts and post-length histograms)
revealed that the top six MBTI types (INFP, INFJ, INTP,
INTJ, ENFP, ENTP) constitute over 50% of the data and
that similar imbalances persist at the single-letter dimension.
This kind of data imbalance persist when separate each
component letter of MBTI type. To address class imbal-
ance and limit computational overhead, we under-sampled
majority classes—randomly selecting an equal number of
posts per MBTI type using a fixed random seed for repro-
ducibility. Finally, we employed Hugging Face’s ‘bert-base-
uncased’ tokenizer to tokenize our posts, and generated at-
tention masks and token type IDs. Additionally, a stratified
70/15/15 train/validation/test split is conducted to ensure
unbiased model evaluation.

Figure 1. Distribution of MBTI and Features

4. Model Development and Evaluation
4.1. Methodology

At the initial planning stage of this project, we designed
MBTI personality prediction as a standard 16-class classifi-
cation task, where each MBTI type (e.g., ”INFP”, ”ESTJ”)
was treated as a distinct categorical label. This straightfor-
ward formulation allowed for the direct application of con-
ventional multi-class classification models. However, from
a theoretical perspective, this approach inherently treats
all personality types as mutually exclusive and equidistant,
ignoring the underlying structured composition of MBTI
types along four orthogonal psychological dimensions: En-
ergy (E/I), Information (N/S), Decision (T/F), and Lifestyle
(P/J).

Recognizing these structural characteristics, we anticipated
potential limitations in the 16-class setup. For instance,
while “ENTP” and “ENFP” differ solely in the T/F dimen-
sion, the 16-class classifier lacks any mechanism to ex-
plicitly model their proximity. Additionally, semantically
invalid combinations like “EINF” could not be ruled out
in this flat classification approach. These considerations
suggested that the model might suffer from impaired in-
terpretability and an inability to leverage MBTI’s inherent
compositional structure.

To address these issues, we planned a reformulation of the
task into a multi-binary classification framework. Instead
of predicting a single 16-type label, we devised four inde-
pendent binary classifiers, each targeting one MBTI dimen-
sion. In this setup, each classifier specializes in a single
psychological dichotomy—Extraversion vs. Introversion,
Intuition vs. Sensing, Thinking vs. Feeling, and Perceiving
vs. Judging—thereby enabling dimension-specific learning
and interpretability. This design, conceptually akin to a Mix-
ture of Experts, was aimed at enhancing model transparency
and providing fine-grained diagnostic capabilities.

The training labels for each binary classifier were generated
by decomposing the original 16-type labels into a set of
four binary indicators. For instance, the type “ENFP” was
mapped to the vector [1, 1, 0, 1], representing the presence
of traits E, N, F, and P. This decomposition was intended
to allow the models to focus on identifying linguistic pat-
terns associated with each psychological dimension inde-
pendently, potentially improving both model interpretability
and robustness.

At inference time, the four classifiers independently pro-
duced probability scores for their respective dimensions.
Thresholding these scores (typically at 0.5) enabled binary
decisions, which were then recombined to generate the pre-
dicted MBTI type (e.g., [1, 1, 0, 1] → “ENFP”). This
modular strategy also allowed us to examine whether the
model’s outputs adhered to MBTI structural constraints (e.g.,
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preventing invalid types like “EINF”).

However, we recognized that this modeling choice in-
troduced a trade-off: while the multi-binary framework
promotes modular analysis, it assumes independence be-
tween dimensions. In reality, MBTI types exhibit inter-
dimensional dependencies and non-uniform co-occurrence
patterns. Some combinations, such as “INFP” or “ENFJ,”
are more frequent and coherent than others. Without explic-
itly modeling these joint distributions, the binary classifiers
might produce plausible but statistically improbable types.

In parallel, we continued to explore improvements by intro-
ducing stronger pretrained models such as RoBERTa (Ro-
bustly Optimized BERT Pretraining Approach). Building
on the limitations observed in BERT, RoBERTa offered a
more powerful language encoder with enhanced pretraining
techniques. The idea was to examine whether end-to-end
fine-tuning of a larger model could overcome some of the
weaknesses identified in our earlier configurations. Fol-
lowing this, we also explored T5 (Text-to-Text Transfer
Transformer), leveraging its flexible text-to-text paradigm
to reframe personality prediction as a sequence generation
task, although practical constraints hindered the realization
of its full potential within our setting.

Throughout this methodological progression, we consis-
tently balanced between maximizing model expressiveness
and maintaining interpretability, planning each subsequent
step based on both theoretical motivations and empirical
findings from previous phases.

4.2. Logistic Regression (Baseline)

We chose Logistic Regression as our baseline model for
predicting MBTI personality types for three main reasons.
First, its straightforward design makes it easy to implement
and interpret, while its clear coefficients help reveal the in-
fluence of key features in the text data. Second, compared
to more complex models, Logistic Regression has relatively
low computational demands, allowing us to quickly estab-
lish a performance benchmark before exploring more ad-
vanced alternatives. Finally, if its effectiveness in binary
and multi-class classification tasks is proven, it will be a reli-
able foundation for modeling categorical data such as MBTI
types, especially when dealing with text-based inputs.

First, let’s examine the performance of the 16-class MBTI
type prediction model. As shown in the results, the model
achieves an extremely low accuracy of just 6.24% - even
worse than random guessing (which would yield 6.25%
accuracy for 16 balanced classes). The model also fails uni-
formly across all types, showing nearly identical precision,
recall, and F1 scores ranging between 0.05 and 0.07, with
no type demonstrating even marginally better performance
than others. While the ’ESFJ’ type shows a slightly higher

recall of 0.10, this minor variation appears to be random
rather than representing meaningful differentiation.

Figure 2. Logistic Regression Classification Report (16-Class)

Next, let’s examine the performance of the classifiers spe-
cific to each dimension. From the comparison table of clas-
sification reports below, we can observe that all classifiers
achieved accuracy scores hovering around 0.5, indicating
that the model essentially lacks discriminative power and
performs no better than random guessing - equivalent to
a coin flip. Furthermore, the comparable performance be-
tween Class 0 and Class 1 suggests the model shows no
significant preference or bias toward either class in its pre-
dictions.

Dimension Accuracy F1 (Class 0) F1 (Class 1)

E/I 49.8% 0.48 0.51
N/S 49.8% 0.51 0.49
T/F 50.2% 0.49 0.51
P/J 49.5% 0.48 0.51

Table 1. Logistic Regression Classification Report (Binary)

4.3. BERT Based 16 Classification Model

Realizing logistic regression does not have strong predic-
tive ability, we then further explored Bidirectional Encoder
Representation (BERT) model to conduct 16 categories clas-
sification task. In the model building stage, we tried dif-
ferent hyperparameters for the model. Worring overfitting
and limited computational resources, we applied 2 layers
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neural network with a dropout rate of 0.1 and the AdamW
optimizer with learning rate of 3e-5 and weight decay of
1e-6. However, we end up finding our model tend to under-
fitting when evaluating on the validation set. Therefore, we
finally employed a 3 layer neural network with dropout rate
of 0.05 with no freezing layers. To accelerate the conver-
gence speed, we adjusted the hyperparameters of AdamW
optimizer to a learning rate of 2e-5 and a weight decay of
1e-3.

Figure 3. BERT Classification Report on Full Dataset (16-Class)

The performance of BERT 16 classification model is slightly,
but limited, better than logistic regression. Our model has
a slightly large cross entropy loss of 2.78, which indicates
our model fails to learn significant patterns to make classifi-
cation during the training process. The F-1 score of 0.1325,
although two-fold compare with the probability of random
guess, still not accurate enough, confirming the limited clas-
sification ability. Additionally, a F-1 score of 0.1325, a
precision score of 0.1398, and a recall score of 0.1346 indi-
cates a high false positive and false negative classifications.
Dive into the detail, we find the model has slightly strong
ability in predicting ‘ESTJ’ MBTI type with an precison
of 0.2 and a recall of 0.16 meanwhile performs the worst
when predicting ‘ENFJ’ MBTI type. This might indict the
quality of two types of MBTI dataset could be greatly dif-
ferent. Besides these two MBTI types, all other types have
accuracy rate, Recall, and F-1 score between 0.1 and 0.2.
Therefore, although the BERT 16 classification model is
slightly better than random guess and logistic regression
model, the current performance indicates this model is still

far from realistic application usage.

At this stage, we hypothesized that the model’s suboptimal
performance might stem from a probability distributional
mismatch between the two merged datasets. Specifically,
differences in data collection timeframes, geographic ori-
gins, and potential sampling biases could have led to sig-
nificant divergences in word usage probabilities between
the two datasets, even among users sharing the same MBTI
personality type. In the worst-case scenario, the feature
distributions for the same MBTI in one dimension could
even exhibit reversed patterns across datasets. Simply con-
catenating these two datasets without accounting for such
differences might hinder the model’s ability to learn any
coherent underlying patterns from either source.

To test this hypothesis, we conducted an additional exper-
iment where we trained and evaluated the same model on
a single dataset. The result showed that the model’s per-
formance on the single dataset was not significantly better,
with slightly better accuracy but worse F1 Score, than on
the merged dataset, suggesting that our initial concern was
unnecessary. The relatively poor model performance did not
originate from distributional shifts between the two datasets.
In fact, merging the datasets may be beneficial, likely due
to the scale effect and the increased diversity of training
samples, which can help regularize the model and mitigate
overfitting.

Therefore, for all subsequent experiments, we continue to
use the merged dataset.

Figure 4. BERT Classification Report on Single Dataset (16-Class)
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4.4. BERT Based Multi-Binary Classification Model

To ensure a fair comparison, each binary classifier was
trained with the same data, hyperparameters, and evalu-
ation settings as the 16-class model, including identical
BERT encoder configurations, optimizers, batch size, and
epochs. Model performance was evaluated on the same test
set. Although each binary model shares the same number
of parameters as the 16-class classifier in BERT layers, we
expected improved performance with this setup.

Figures 5–8 show the performance of each dimension-
specific classifier. The Energy dimension had high recall
for Extraverts (0.7314) but lower precision (0.5454), indi-
cating frequent misclassification of Introverts as Extraverts,
likely due to more obvious Extraversion features in user text.
The Information dimension showed the opposite: higher
precision but lower recall for Intuitive types, suggesting the
model was more conservative but accurate when predicting
Intuition.

Figure 5. BERT Classification Report (E/I)

Figure 6. BERT Classification Report (N/S)

Figure 7. BERT Classification Report (T/F)

Figure 8. BERT Classification Report (J/P)

The Decision dimension yielded the most balanced results,
with both precision and recall near 0.57–0.59, suggesting
that the contrast between logical reasoning and emotional
expression is more linguistically distinct and evenly dis-
tributed in the dataset. The Lifestyle dimension mirrored
the Energy dimension’s asymmetry, with higher recall but
lower precision for the perceiving class.

We further evaluated the joint performance of the integrated
model by recombining the four binary predictions into com-
plete MBTI types and comparing them with the ground truth
labels. The combined model achieved an overall accuracy
of 11.93%, which is consistent with the expected compound
error rate derived from the individual dimension accuracies
(approximately 10.2% from the product of four indepen-
dent accuracies), although the integrated model actually has
nearly three times more parameters than the 16-class classi-
fier. This result confirms that errors made at the dimension
level propagate and amplify when predicting full personality
types.

We further evaluated the joint performance of the integrated
model by recombining the four binary predictions into com-
plete MBTI types and comparing them with the ground truth
labels. The combined model achieved an overall accuracy
of 11.93%, which is consistent with the expected compound
error rate derived from the individual dimension accuracies
(approximately 10.2% from the product of four indepen-
dent accuracies), although the integrated model actually has
nearly three times more parameters than the 16-class classi-
fier. This result confirms that errors made at the dimension
level propagate and amplify when predicting full personality
types.

Detailed analysis of type-level performance reveals addi-
tional insights. Certain types, such as INFJ and INTJ, exhib-
ited notably higher recall (0.222 and 0.299, respectively),
indicating a tendency of the model to overpredict these com-
binations. However, their low precision values (0.0946 and
0.0968) suggest a high rate of false positives—an issue not
observed in the 16-class model—highlighting the risks of
compounding misclassifications in the binary setup.

On the other hand, types such as ENFP and ISTJ showed
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particularly low F1 scores, likely due to the instability of
individual dimension predictions. Interestingly, types like
ISFP and ESFJ achieved more balanced performance, possi-
bly because the underlying dimensions for these types are
more consistently expressed in linguistic patterns.

Overall, while the multi-binary decomposition aligns better
with the theoretical underpinnings of MBTI and supports
targeted diagnostics, it does not outperform the 16-class
classifier in terms of full-type accuracy. Moreover, its as-
sumption of inter-dimensional independence leads to com-
pounded prediction errors. Future work may benefit from
incorporating joint modeling techniques—such as structured
prediction, conditional dependency modeling, or probabilis-
tic coherence constraints—to preserve both modular inter-
pretability and inter-dimensional consistency.

Figure 9. BERT Classification Report (Integrated Model)

4.5. RoBERTa Expolration

To explore more alternative model selections, we tried the
RoBERTa model (Robustly Optimized BERT Pre-training
Approach) to perform a 16-class MBTI personality clas-
sification based on user text posts. RoBERTa is an ad-
vanced transformer-based language model that improves
upon BERT by removing the next-sentence prediction ob-
jective and training with larger mini-batches and longer
sequences. It has shown strong performance in various
downstream tasks due to its pre-training on a large corpus
with dynamic masking strategies.

The model was fine-tuned on our resampled dataset, using

a multiclass classification head (number of labels=16) on
top of the roberta-base encoder. The learning rate was set to
2e-5 with linear scheduling and a warm-up ratio of 0.1, and
the training was carried out over 3 epochs. Accuracy was
used as the primary evaluation metric.

During training, we observed a gradual decrease in training
loss from 2.7084 in epoch 1 to 2.6004 by epoch 3. The vali-
dation loss remained relatively stable, fluctuating slightly be-
tween 2.7059 and 2.6849. The validation accuracy showed a
modest but consistent upward trend, improving from 11.30%
in the first epoch to a final value of 13.21% by the third
epoch.

The training loss curve further confirms convergence, with a
noticeable drop around the midpoint of training and gradual
stabilization thereafter. This suggests that while the model
is being studied, it might be approaching a performance
ceiling under the current configuration.

Despite using a powerful pretrained model, the resulting
accuracy did not exceed 13.3%. This can be attributed to sev-
eral factors such as label complexity (16 MBTI classes), the
relatively limited input length, and subtle linguistic features
that may not be fully captured by token-level representa-
tions.

Figure 10. RoBERTa Performance

In comparison, the BERT-based embedding combined with
an MLP classifier achieved slightly better results in terms
of accuracy. This discrepancy may be due to differences in
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modeling approaches. In the BERT + MLP setup, BERT
serves as a static feature extractor, providing relatively sta-
ble semantic representations, just like the rich and diverse
daily words usage of online posts, which is more suitable
for tasks with smaller label spaces. In contrast, RoBERTa
is fine-tuned end-to-end, with larger model capacity and
stronger expressive power, but also more prone to overfit-
ting or unstable training when hyperparameters like learning
rate or training epochs are not well-optimized.

Furthermore, the BERT + MLP framework is structurally
lighter and easier to control during training, leading to more
stable overall performance. However, RoBERTa training is
more sensitive to data quality and hyperparameter settings,
which may have limited its performance in this particular
task.

4.6. T5 Exploration

Following our previous experiments with BERT and
RoBERTa models, we further explored the use of the T5
model for this task. Unlike encoder-only models like BERT
and RoBERTa, T5 frames the entire problem in a pure text-
to-text format, which offers greater flexibility in designing
prompts and aligning inputs and outputs seamlessly. Its
generative nature also allows for more natural handling of
structured label outputs, making it a promising alternative
for this kind of classification task.

In this phase, we adopted a similar task setup: the dataset
was stratified and split into training, validation, and test
sets, and each post was paired with either a full MBTI type
label or a label corresponding to one of the four dimen-
sions. Using carefully designed prompts, we trained the
T5 model to predict the full personality type or individual
dimensions. The model, tokenizer, and configuration were
based on the pre-trained ”t5-base,” with minor modifications
such as ”dropout=0.1” and ”batch-size=16”. Tokenization
and preprocessing were performed accordingly, and training
was carried out using Hugging Face’s Trainer. This continu-
ation of work builds directly upon our earlier approaches,
providing a comparative perspective between discriminative
and generative modeling strategies for MBTI prediction.

Despite careful prompt design and data preparation, the T5
model’s predictions did not meet expectations. Although
the model showed a low loss at the end of training, its
predictions were still inaccurate. This discrepancy may be
due to the focus of the model on generating fluent text rather
than precise classifications. Additionally, T5 uses cross-
entropy loss, which works well for generative tasks but may
not align perfectly with classification tasks, affecting its
ability to predict discrete MBTI types.

While T5’s architecture is powerful, its performance in
MBTI prediction was limited by memory and resource con-

straints during training, which hindered its ability to capture
the complex relationships between posts and MBTI labels.
Furthermore, the inherent complexity of predicting MBTI
types involves understanding nuanced psychological traits,
making the task more challenging. To improve accuracy,
future experiments could explore domain-specific models,
hybrid approaches, or preprocessing techniques like senti-
ment analysis. Further adjustments to the hyperparameters
and the expansion of the training dataset could also enhance
prediction performance.

In conclusion, while the T5-base model offers flexibility in
generating text and handling structured outputs, its perfor-
mance in MBTI prediction was less accurate compared to
our previous experiments with BERT and RoBERTa. De-
spite achieving a low loss during training, T5’s generative
nature, focused on producing fluent text rather than precise
classifications, led to inaccurate predictions. Unlike discrim-
inative models like BERT and RoBERTa, T5 struggled to
capture the complex relationships between posts and MBTI
labels. Furthermore, computational limitations may have
hindered its performance. This comparison suggests that,
while generative models such as T5 offer flexibility, they
may require more domain-specific adjustments for classifi-
cation tasks. Future improvements might involve combining
discriminative and generative models, refining preprocess-
ing methods, and expanding the training set to better capture
the nuances of MBTI prediction.

4.7. Result Analysis and Model Selection

To comprehensively evaluate alternative modeling strategies
for 16-class MBTI personality classification, we compared
the performance of baseline and several transformer-based
architectures, including a BERT-based multi-binary classi-
fier, a RoBERTa fine-tuned model, and a T5-based model,
against the final selected BERT 16-class classifier. Although
the performance of none of them was satisfactory.

Model Number of parameters F1 on test set Accuracy on test set

Logistic Regression 12,304 0.0621 0.0624

BERT 16-class classifier 110M 0.1325 0.1346

BERT multi-binary model 4*110M 0.1131 0.1193

RoBERTa 125M 0.1286 0.1330

T5 220M Na Na

Table 2. Models’ Performance Comparison

The BERT multi-binary classifier, which treats each MBTI
dimension as an independent binary task, showed lower
overall performance compared to the direct 16-class clas-
sification approach. This is likely due to the loss of inter-
dimensional dependencies between MBTI traits, as treating
each axis separately ignores the underlying correlations em-
bedded in user text patterns. Additionally, the cumulative
parameter size across four independent classifiers led to
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increased model complexity without proportional gains in
generalization, making the training process less efficient
and more susceptible to overfitting.

The RoBERTa model, despite its enhanced pretraining strate-
gies and greater expressive capacity compared to BERT,
achieved a comparable but slightly lower test accuracy rel-
ative to the BERT 16-class classifier. This may stem from
RoBERTa’s increased sensitivity to hyperparameters and
data quality, especially in settings with a limited amount of
nuanced linguistic input and a highly granular label space
like MBTI. In contrast, the BERT-based model, with a
slightly more controlled optimization process and smaller
label smoothing effects, demonstrated more stable conver-
gence behavior and better alignment with the task character-
istics.

Explorations with the T5 model, which frames tasks in a
text-to-text format, failed to meet performance expectations
for this classification task. The inherent mismatch between
T5’s generative architecture and the discrete nature of clas-
sification objectives led to difficulties in optimization and
effective learning. Unlike extractive or discriminative mod-
els, T5’s formulation introduces additional variability and
decoding complexities, which proved suboptimal under the
current task requirements and dataset conditions.

In conclusion, by balancing performance stability, model
complexity, and task alignment, the BERT 16-class clas-
sifier emerged as the most suitable choice for this MBTI
classification task, achieving the best test set performance
in both accuracy and F1 score.

5. API Deployment
After obtaining the best results from our top-performing
BERT model, we proceeded to develop an MBTI classifi-
cation API. To deploy the API, we created a Hugging Face
Space, uploaded the necessary files, and accessed the API
through a public link. This link leads to an automatically
generated interactive documentation (Swagger UI), which
allows users to test our API directly in the browser without
writing any code. The primary objective of deploying this
API is to enable external users to engage with and apply
the outcomes of our project, thereby realizing the business
value outlined in Section 3. The API is designed for ease
of use—simply click this link, select ”Try it out,” and enter
a sentence into the input box. For instance, in the example
shown below, we input a sentence reflective of the INFP
personality type. Upon clicking ”Execute,” the API returns
the predicted MBTI type along with a confidence score. In
this case, the model predicted ENFP with a confidence score
of 0.08.

Although the confidence score is relatively low, the pre-
dicted result is still directionally consistent with the true

type, suggesting that the model effectively captures key per-
sonality traits. This demonstrates the model’s underlying
potential, even under conditions of low certainty. Nonethe-
less, we are committed to continuously improving prediction
accuracy and reliability. This initial deployment serves as
a robust foundation for future development. Thanks to the
API’s modular design, we can upgrade the backend—such
as incorporating larger training datasets or more sophisti-
cated model architectures—without altering the interface.
As a result, users can benefit from ongoing performance
improvements without any disruption to their experience.

Figure 11. API deployment

6. Limitation and Future Improvement
Due to the unsatisfactory models’ performance, it is needed
to discuss the limitations of this project. This may offer
avenues for future research.

First, due to computational resource constraints, we ad-
dressed the issue of class imbalance through undersampling
rather than employing more sophisticated techniques such
as weighted loss functions. This decision inevitably resulted
in the loss of a substantial amount of information and dis-
proportionately amplified the influence of minority MBTI
type publishers, potentially introducing bias into the model
training process.

Second, regarding the input data, many online posts are rela-
tively short in length, providing insufficient textual evidence
to comprehensively represent a user’s personality. Short
posts limit the capacity of Transformer-based architectures
to fully exploit their attention mechanisms, which are most
effective when modeling long-range dependencies. Treat-
ing short posts as equally important observations alongside
longer ones may have reduced the model’s ability to cap-
ture deeper underlying personality patterns. For instance,
in another training attempt of our 16-class classifier, we
eliminated overly short posts, and the accuracy performance
of the model improved slightly by 0.01.

Furthermore, each post was treated as an independent ob-
servation, which does not accurately reflect the real-world
dynamics of user expression. In practice, individuals often
convey their emotions, thoughts, and personalities across
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multiple posts within a temporal context, with potential emo-
tional fluctuations and evolving viewpoints. Such higher-
level contextual patterns are likely to be closely tied to stable
personality traits. However, due to the lack of timestamp
information associated with posts, we were unable to model
these temporal dynamics or capture cross-post dependencies
effectively.

Figure 12. BERT Classification Report (16-Class, after Filtering
out too Short Posts)

Additionally, limitations in computational resources and
time prevented us from thoroughly exploring the potential
advantages of ensemble modeling. As discussed previously,
the 16-class classifier and the multi-binary classifier demon-
strated complementary strengths across different MBTI
types. Integrating these models through ensemble meth-
ods could leverage their respective advantages and might
lead to unexpectedly strong performance, which remains an
open avenue for future exploration.

Moreover, hyperparameter optimization for the RoBERTa
model was limited. A more extensive and systematic search
over learning rates, batch sizes, warmup strategies, and
regularization techniques could potentially unlock better
performance, given RoBERTa’s known sensitivity to fine-
tuning configurations.

Another notable limitation concerns the modality of input
data. In today’s digital communication landscape, users
increasingly express their emotions and thoughts not only
through text but also through emojis, images, videos, and
other multimodal content. By focusing exclusively on text-
based inputs, our study constrained the model’s ability to

access the full richness of user expression, thereby setting
an upper bound on achievable performance.

Finally, from an epistemological perspective, it is important
to acknowledge that personality is often considered dynamic
and context-dependent rather than fixed and immutable. Our
study inherently assumes that posts at different time points
are reflective of a user’s static, self-reported MBTI type.
However, if personality traits fluctuate over time, the corre-
spondence between specific posts and a singular personality
label may be inherently noisy, especially when treating each
post, rather than each user, as the unit of analysis.

Future research could address these limitations by adopting
weighted loss techniques to better handle class imbalance
without discarding valuable data, and by designing hierarchi-
cal models that capture sequences of posts along a temporal
axis. Incorporating multimodal data sources such as images
and emojis could further enrich the representation of user
expressions. In addition, developing ensemble frameworks
that strategically integrate different classifier types, and con-
ducting more comprehensive hyperparameter tuning, par-
ticularly for larger pretrained models like RoBERTa, could
yield significant performance improvements. Finally, future
work may benefit from embracing a dynamic modeling of
personality, perhaps by framing the task as a time-series pre-
diction problem or by exploring representations that allow
for personality evolution over time.

7. Conclusion
In this project, we explored two modeling strategies for
MBTI prediction based on users’ text posts. One is direct
16-class classification, predicting the full personality type
at once. The other is multi-binary classification, separately
predicting the four MBTI dimensions: Energy (E/I), Infor-
mation (S/N), Decision (T/F), and Lifestyle (J/P).

Starting from a logistic regression baseline model, we
further explored alternative methods, including BERT,
RoBERTa and T5. Although multi-binary classification
and stronger pre-trained models like RoBERTa and T5 of-
fered theoretical advantages, none outperformed BERT in
terms of accuracy and stability. The multi-binary approach,
while conceptually more aligned with MBTI’s dimension
structure, introduced compounded prediction errors and in-
creased model complexity. RoBERTa showed promising ex-
pressive power through enhanced pretraining strategies but
proved highly sensitive to hyperparameters and struggled
with the dataset’s nuanced language patterns. Meanwhile,
T5’s generative framework, despite offering flexibility, was
less suited for discrete classification tasks and underper-
formed compared to discriminative models.

Following model selection, we successfully deployed an
MBTI classification API to Hugging Face Spaces, enabling

9



MBTI Classification Model Based on NLP

real-time public access to the model’s capabilities. While
the initial deployment demonstrates the model’s potential,
especially in directionally capturing personality traits, it also
highlights areas for future enhancement.

Nevertheless, several limitations constrained the project’s
performance. These include reliance on undersampling tech-
niques for class balance, the short length and isolated nature
of text posts, lack of temporal modeling, and computational
resource constraints that prevented extensive hyperparam-
eter tuning and ensemble methods. Moreover, focusing
exclusively on text without incorporating multimodal user
data and assuming static personality types may have intro-
duced additional noise.

Looking ahead, future research could focus on employing
more sophisticated data balancing methods, capturing longi-
tudinal user behaviors, integrating multimodal inputs, and
adopting ensemble learning to combine the strengths of dif-
ferent architectures. Furthermore, rethinking personality
prediction as a dynamic rather than static problem could
open new perspectives for more accurate and meaningful
modeling.

Overall, while our work establishes a strong baseline for
MBTI personality prediction from text, it also reveals the
challenges and opportunities inherent in this complex task.
Continued refinement in both model design and data repre-
sentation will be essential for achieving higher performance
and deeper insights.
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