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Abstract  
   Recommender systems play a crucial role in 

guiding user engagement on content platforms. 
This paper explores various recommendation 
approaches using the MovieLens 1M dataset 
enriched with DBpedia metadata. We implement 
and compare a popularity baseline, user-based 
and item-based collaborative filtering, matrix 
factorisation with implicit Alternating Least 
Squares (ALS), and a hybrid LightFM model. 
Models are evaluated using Precision@K, 
Recall@K, and NDCG@K. Our findings 
demonstrate the value of personalised 
approaches over non-personalised baselines, and 
highlight the trade-offs between pure 
collaborative, matrix factorisation, and hybrid 
techniques, particularly regarding cold-start 
handling and diversity. Code and data can be 
found here: 
https://github.com/Keefekkx/Movie-Recommend
er 

1. ​ Introduction 

1.1 ​ Background 

Recommender systems have become a vital component of 
many online platforms, helping users discover relevant 
content in the face of information overload​. In the movie 
domain, recommendation engines drive user engagement 
on streaming services and e-commerce sites by 
personalizing content to individual tastes. Collaborative 
filtering (CF) and content-based filtering are the two 
classic approaches to recommendation. Collaborative 
filtering leverages patterns of user behavior, operating on 
the principle that users with similar past preferences will 
enjoy similar items​. In contrast, content-based filtering 
relies on item features, recommending items that are 
similar in content (e.g. genre, actors, etc.) to those a user 
liked before​. Each approach has its limitations: 
collaborative methods struggle with new users or items 
(the cold-start problem) since they have no prior 
interactions, while content-based methods can only 
recommend items that share obvious attributes with a 
user’s history and may not capture subtle taste 

similarities. To address these limitations, hybrid 
recommender systems combine collaborative and 
content-based techniques​. In fact, many production 
systems (such as Netflix’s prize-winning algorithm) use a 
hybrid approach to achieve both accuracy and novelty in 
recommendations​. 

1.2 ​ Objective 

This project is an exploratory study of different 
recommendation algorithms, with an emphasis on 
understanding their mechanics and evaluating their 
performance on a real-world dataset. We implement five 
models of increasing complexity: (1) a Popularity 
baseline that recommends top-rated movies to everyone, 
(2) User-based CF and (3) Item-based CF using 
neighborhood similarity, (4) an implicit feedback ALS 
matrix factorization model, and (5) a LightFM hybrid 
model that incorporates both collaborative signals and 
content features. We evaluate these models on a held-out 
test set using ranking metrics that reflect the quality of the 
top recommendations. Rather than trying to crown a 
single “best” model, we analyze the pros and cons of 
each, considering factors like accuracy, coverage, 
personalization, and real-world deployment 
considerations. Through this comparative analysis, we 
aim to derive insights into how recommendation 
algorithms work and how they can be applied or 
combined in practical applications. 

2. ​ Dataset and Data Preprocessing 

2.1 ​ Data Overview 

We use the MovieLens 1M dataset, which consists of 
1,000,209 anonymous ratings (on a 5-star scale) from 
6,040 users for 3,883 movies​. Each user has rated at least 
20 movies, and each rating is accompanied by a 
timestamp. The dataset also provides basic user attributes 
(age group, gender, occupation, and zipcode) and movie 
attributes (title and genres). The user rating matrix is very 
sparse – out of the ~22 million possible user-movie 
combinations, only about 4.5% are observed as ratings​, 
meaning over 95% of the matrix is empty. This level of 
sparsity is typical in recommender system data and 
reflects the reality that each user only interacts with a tiny 
subset of all items. 
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To enable content-based and hybrid recommendations, we 
augmented the MovieLens data with additional movie 
metadata from DBpedia. DBpedia is a project that extracts 
structured information from Wikipedia. For each movie in 
the dataset, we used a pre-existing mapping from 
MovieLens to DBpedia to retrieve attributes such as the 
movie’s director(s), top cast (actors), country of origin, 
and original language. These attributes provide a richer 
description of each movie. We collected such information 
via SPARQL queries to the DBpedia knowledge base and 
merged it with the MovieLens movie list. This resulted in 
a consolidated movies metadata table, where each movie 
is described not only by its title and genre (from 
MovieLens) but also by a set of content features from 
DBpedia. These features are later used in the LightFM 
hybrid model to represent items. 

2.2 ​ Positive Feedback & Cold-Start Filtering 

In recommender systems, clearly distinguishing positive 
user preferences from negative or neutral ones is essential 
for accurately capturing tastes and providing meaningful 
recommendations. In this project, ratings of 4 and 5 stars 
were explicitly defined as positive interactions, reflecting 
strong user preferences and genuine satisfaction. Ratings 
below 4 stars (1–3 stars) were excluded, as they typically 
indicate neutral or negative sentiment—suggesting 
weaker enthusiasm, ambiguity, or explicit dissatisfaction. 
By isolating these high-confidence positive ratings, we 
enable the recommender models to learn effectively from 
interactions where the user's interest is clearly signaled. 
Additionally, each positive interaction was assigned a 
confidence weight: interactions rated 5 stars received a 
weight of 1.0, indicating strong certainty of preference, 
while 4-star interactions received a slightly lower weight 
of 0.5. These weighted interactions form critical inputs for 
the subsequent modeling stages. 

Furthermore, we addressed the cold-start problem, which 
often affects the reliability of collaborative filtering 
algorithms due to insufficient interaction data for new or 
inactive users and unpopular items. Specifically, we 
removed users and items with very few positive 
interactions—the bottom 10% of least active users and 
least popular movies (based on the count of positive 
ratings). By filtering out these sparse interactions, we 
improved data quality and ensured that our 
recommendation algorithms had adequate data points to 
generate reliable predictions. After this cold-start filtering 
process, our dataset contained 5,390 users and 3,125 
movies, encompassing 565,817 high-confidence ratings. 
This preprocessing step provided a robust foundation for 
meaningful comparative analysis across different 
recommender models. 

2.3 ​ Train-Test Split 

To rigorously evaluate our recommender models, we 
partitioned the data into distinct training and test sets. 
Specifically, we performed an 80/20 chronological split 
per user to closely simulate real-world recommendation 
scenarios and prevent temporal leakage. For each user, 
interactions (ratings) were sorted by timestamp, and the 
most recent 20% were designated as the test set, while the 
earlier 80% formed the training set. This approach mimics 
the practical task of recommending new movies based on 
previously observed interactions, thereby ensuring the 
models are evaluated on their ability to predict future user 
preferences. After applying this splitting strategy, our 
final training set contained 450,543 interactions, and the 
test set comprised 115,274 interactions. All interactions in 
the test set were treated as relevant items, representing 
movies that users actively chose and rated in the future. 
During evaluation, a recommendation was considered 
successful if it retrieved a movie from the user's test set, 
aligning with standard practice in implicit feedback 
settings where observed future interactions are assumed to 
reflect user preferences. 

2.4 ​ Feature Engineering for Hybrid Modeling 

To construct feature representations for hybrid 
recommendation modeling, we engineered item features 
and user features based on available metadata. For item 
features, we utilized attributes such as genres, actors, 
languages, and countries from the processed movie 
metadata. Each categorical field was multi-hot encoded, 
while movie titles were transformed into TF-IDF vectors 
(limited to the top 500 terms) to capture textual 
information. Additionally, release years were discretized 
into decade bins and encoded using one-hot encoding to 
model temporal characteristics. The resulting item feature 
matrix was a sparse concatenation of all encoded 
components. 

Similarly, for user features, we leveraged demographic 
information from the MovieLens dataset, including 
gender and occupation, both of which were one-hot 
encoded. Age was grouped into discrete bins (e.g., 18–25, 
25–35, etc.) and likewise one-hot encoded to handle age 
as a categorical feature. Both the item and user feature 
matrices were sparsely constructed to ensure memory 
efficiency and compatibility with hybrid models like 
LightFM, which can exploit these rich side features 
during training. 

3. ​ Exploratory Data Analysis (EDA) 

Before building models, we conducted an exploratory 
data analysis (EDA) to understand the characteristics of 
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the MovieLens 1M dataset and the enriched metadata 
from DBpedia. This analysis provided essential context 
for the challenges a recommender system must address. 

3.1 ​ Rating Distribution 

The distribution of movie ratings is positively skewed 
(Figure 1). Users are much more likely to give favourable 
ratings: 4-star ratings are the most frequent, followed by 
3-star and 5-star ratings. The mean rating across the 
dataset is approximately 3.5 out of 5. This strong positive 
bias suggests that many movies in the dataset are regarded 
favourably, and that a random selection of high-rated 
movies might still yield moderate user satisfaction. 
However, this also introduces risk: models optimising 
purely for predicting high ratings may not necessarily 
offer meaningful personalisation. 

 

Figure 1: Rating distribution showing counts of each 
rating from 1 to 5. 

Additionally, because there are significantly more positive 
than negative ratings, any supervised model training must 
account for this imbalance to avoid trivial solutions (e.g., 
always predicting 4 stars). 

3.2 ​ User-Item Interaction Sparsity 

The user-item interaction matrix is extremely sparse. Only 
around 3.3% of all possible user-movie pairs contain a 
positive rating (≥4 stars). 

To better visualise engagement patterns, we plot the 
distributions of rating counts per user and per item on a 
log scale (Figure 2). Most users have rated relatively few 
movies, while a few highly active users have rated 
hundreds. Similarly, most movies are rated by only a 
handful of users, whereas blockbuster films accumulate 
thousands of ratings. This long-tail behaviour is a 
fundamental characteristic of recommendation datasets. 

 

Figure 2: (Top) Density distribution of number of ratings 
per user 

(Bottom) Density distribution of number of ratings per 
item, both shown in log-log scale 

These patterns indicate that methods must generalise from 
sparse data. Popularity-based methods risk focusing only 
on a small subset of blockbuster movies, while 
collaborative filtering models must infer user preferences 
from limited interactions. 

3.3 ​ Genre Distribution 

We analysed the distribution of genres across movies 
(Figure 3). Drama, Comedy, and Action dominate the 
dataset, with Drama appearing in more than 1,600 
movies. Less frequent genres include Adventure, Sci-Fi, 
and Crime. 

 

Figure 3: Top 10 genres by number of movies. 

The genre imbalance implies that content-based 
recommendation approaches might unintentionally favour 
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more common genres unless corrective mechanisms are 
applied. 

3.4 ​ Top Directors and Actors 

We explored metadata on directors and actors. Alfred 
Hitchcock, Woody Allen, and Steven Spielberg are among 
the most prolific directors in the dataset (Figure 4). For 
actors, frequent appearances include ensembles such as 
those involved in Star Wars and Monty Python films 
(Figure 5). 

 

Figure 4: Top 10 directors by number of unique movies 
directed. 

 

Figure 5: Top 10 actors by number of unique movies 
acted in. 

Incorporating information about directors and actors can 
enhance content-based and hybrid models by capturing 
implicit user preferences for certain filmmakers or 
performers. 

3.5 ​ Genre Co-occurrence 

To understand how different genres are related within the 
MovieLens 1M dataset, we constructed a genre 
co-occurrence matrix. Each movie may belong to multiple 

genres (e.g., Action and Sci-Fi), and we analysed the 
frequency with which genres appear together. 

 

Figure 6: Genre Co-occurrence 

Figure 6 shows the resulting heatmap. Each row of the 
heatmap is normalised relative to the total number of 
movies in the row's genre. Therefore, the percentages 
represent, for a given originating genre, the proportion of 
its movies that also belong to each column genre. Brighter 
colours indicate stronger associations between genres. We 
observe several notable patterns: 

Action movies frequently co-occur with Science Fiction 
(15.2%), and also with Adventure (10.2%), suggesting 
that Action/Sci-Fi-Adventure is a common thematic 
cluster prevalent in blockbuster films. 

Comedy and Romance genres often appear together, with 
Comedy co-occurring with Romance at 10.7%, and 
Romance reciprocating with Comedy at 19.2%, reflecting 
the prevalence of romantic comedies. 

Drama shows moderate co-occurrence with Thriller 
(10.0%) and Crime (8.7%), consistent with narratives that 
blend emotional depth with suspenseful or criminal 
elements. 

We zeroed the self-co-occurrence diagonals to focus 
attention on cross-genre relationships. These observations 
are important for content-based and hybrid recommender 
systems, where understanding genre correlations can 
enhance the quality and diversity of recommendations. 

4. ​ Methodology 
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We implemented five recommendation algorithms, each 
representing a different approach: a popularity-based 
non-personalized model, two memory-based collaborative 
filtering models (user-user and item-item), a model-based 
collaborative filtering technique (ALS matrix 
factorization), and a hybrid collaborative-content model 
(LightFM). In this section, we describe each method, 
explaining how it works and what assumptions it makes 
about user behavior. 

4.1 ​ Popularity Baseline 

The Popularity baseline recommender serves as a 
straightforward evaluation benchmark. It suggests the 
same set of top-N movies to all users, ranking movies by 
the number of 4- or 5-star ratings received in the training 
data. This approach captures overall user preference, 
recommending widely liked films such as Star Wars, The 
Godfather, or Titanic to any user who has not already 
rated them. Although simplistic, popularity-based 
recommendations often perform reasonably well, as 
popular content tends to appeal broadly. The model is 
immune to the user cold-start problem, making it 
immediately applicable even for new users with no prior 
interactions. However, it lacks personalization, failing to 
serve users with niche interests, and tends to reduce 
recommendation diversity by amplifying already popular 
items. We include the popularity baseline in our 
evaluation to demonstrate the performance gains achieved 
by more sophisticated, personalized algorithms 
Nonetheless, popularity-based strategies often remain a 
critical fallback component in hybrid recommendation 
systems, especially for handling new users. 

4.2 ​ User-Based Collaborative Filtering (UserCF) 

UserCF is a classic memory-based recommendation 
approach that generates suggestions for a user based on 
the preferences of “similar” users. The core idea is that 
like-minded users tend to enjoy similar items. In our 
implementation, we constructed a user–user similarity 
matrix from the training data, where each user was 
represented by a vector of positively interacted movies 
(rated 4 or 5 stars). Pairwise similarities between users 
were computed using cosine similarity, weighted 
according to the user's confidence (assigning higher 
weight to 5-star ratings). For a given target user, we 
identified the top-K most similar users (K = 10) and 
aggregated their preferences to generate 
recommendations. Specifically, candidate movies were 
scored by summing the neighbors' weighted interactions, 
adjusted by similarity to the target user. Movies highly 
liked by similar users but not yet rated by the target user 
received higher scores and were ranked accordingly. 

This method operates under the assumption that users 
with similar historical preferences will continue to like 
similar content. For instance, if two users share a love for 
classic sci-fi films (Star Wars, Alien), and one user has 
enjoyed Blade Runner, the model would recommend 
Blade Runner to the other user even without direct 
knowledge of the movie's content. While user-based CF 
offers personalization and transparency, as 
recommendations are easily explained through similar 
users, it faces scalability challenges as the user base 
grows. Similarity calculations can also be noisy when 
users have rated only a few items, potentially leading to 
unreliable recommendations. We mitigated this by 
applying cold-start filtering and selecting a reasonably 
large neighborhood size (K=10). Overall, user-based CF 
is expected to significantly outperform a popularity-based 
baseline, particularly for users with niche or distinctive 
preferences. 

4.3 ​ Item-Based Collaborative Filtering (ItemCF) 

ItemCF inverts the user-based approach by focusing on 
similarities between items rather than users. Popularized 
by systems like Amazon’s “customers who bought this 
item also bought…” feature, the method assumes that 
items liked by similar groups of users are likely to be 
similar. Specifically, we computed pairwise cosine 
similarities between movies, treating each movie as a 
vector of users who positively rated it. For a target user, 
recommendations are generated by identifying movies 
similar to those the user has previously liked. Each 
candidate movie is scored by aggregating its similarity to 
the user's liked movies—using a weighted sum of 
similarities—and the top-N candidates are ranked 
accordingly. For example, if a user enjoyed Toy Story and 
Finding Nemo, the model would recommend The Lion 
King if it shares high similarity with those favorites. 

Item-based CF operates under the assumption that user 
preferences are stable across similar items. It offers 
practical advantages: the item-item similarity matrix can 
be precomputed offline, and item similarities tend to be 
more statistically robust than user similarities, as popular 
items attract ratings from many users. Consequently, 
ItemCF is often more scalable and stable than user-based 
CF, especially in larger systems. In our dataset, where 
both user and item counts are moderate, we expect 
item-based CF to slightly outperform user-based CF, 
consistent with literature findings. Moreover, it handles 
the user cold-start problem relatively well (as long as the 
user has rated at least one movie), though it still suffers 
from item cold-start limitations, where new movies with 
no ratings cannot be recommended until they accumulate 
interactions.  
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4.4 ​ ALS Matrix Factorisation 

For a more model-driven approach, we implemented 
Alternating Least Squares (ALS) matrix factorization for 
implicit feedback. Matrix factorization is a model-based 
collaborative filtering method that embeds both users and 
items in a low-dimensional latent space. The idea is that 
each user is represented by a vector of latent factors and 
each item by a vector of latent factors, such that the dot 
product of a user’s vector and an item’s vector predicts 
the user’s preference for that item. In our case, we have 
implicit feedback (user likes/dislikes), so we use the 
approach of Hu, Koren, and Volinsky (2008)​ which adapts 
ALS to implicit data with confidence weights. 

We constructed a binary preference matrix , where 𝑃
 if user  positively interacted with item , and 𝑃[𝑢, 𝑖] = 1 𝑢 𝑖

0 otherwise. A corresponding confidence matrix  was 𝐶
also built, assigning higher weights to interactions with 
greater certainty (scaled by rating confidence). ALS 
minimizes a weighted regularized loss function, 
alternating between solving for user and item latent 
vectors. Intuitively, it learns user and item embeddings 
such that their dot product approximates the observed 
interaction strength. We used an existing library 
implementation of ALS (from the implicit Python library) 
and set the number of latent factors to 64 with 
regularization to prevent overfitting, and ran for 30 
iterations. 

After training, recommendations are generated by ranking 
the dot product scores between a user's latent vector and 
all unseen item vectors. ALS is particularly effective at 
capturing subtle, latent relationships that might not be 
visible from direct co-occurrence, enabling it to 
generalize well beyond exact neighbor matches. The 
advantages of ALS include its ability to scale to large 
datasets through parallelized updates and its capacity to 
infer missing preferences by exploiting latent structure. 
However, its limitations include behaving as a black-box 
model, making interpretation challenging and it also 
struggles with cold-start users or items, since factorization 
requires observed interactions to learn meaningful 
embeddings. 

4.5 ​ LightFM Hybrid Model 

LightFM is a hybrid recommendation model that 
combines collaborative filtering with content-based 
information by jointly learning embeddings for users, 
items, and their associated features. Unlike pure 
collaborative models that rely solely on interaction 
patterns, LightFM incorporates metadata (such as genres, 
actors, directors, country, and language for movies, and 
demographics for users) to enhance recommendations, 
particularly in cold-start scenarios. 

In our implementation, each user was represented by their 
ID and features such as gender, age group, and 
occupation. Each movie was represented by its ID along 
with enriched features retrieved from DBpedia, including 
genres, director, actors, country, and language. LightFM 
learns latent vectors for users, items, and features 
simultaneously, and predicts the affinity between a user 
and an item as the sum of their interactions in the latent 
space. The model was trained using the WARP (Weighted 
Approximate-Rank Pairwise) loss, which directly 
optimizes ranking quality by prioritizing correct ordering 
of positive over negative examples. We also trained the 
LightFM model for 10 epochs with 128 latent components 
(factors) and a moderate learning rate. 

This hybrid approach offers several advantages. By 
leveraging content features, LightFM can alleviate 
cold-start issues for new users and items and increase 
recommendation diversity beyond what pure collaborative 
signals allow. It can recommend new movies based on 
shared metadata even if they have few or no historical 
ratings. However, the inclusion of many features can also 
introduce noise if irrelevant attributes dilute the strength 
of collaborative signals. Moreover, LightFM’s 
effectiveness heavily depends on the quality and 
informativeness of the feature engineering. 

5. ​ Results & Discussion 

5.1 ​ Evaluation Metrics 

To comprehensively assess the performance of our 
recommendation models, we computed multiple 
ranking-based metrics. These metrics evaluate both the 
ability of the models to retrieve relevant items and the 
quality of the ranking order. Their definitions are 
summarised in Table 1 below. 

Table 1. Definitions of different evaluation metrics 

METRIC Definition 

PRECISION@K Measures the proportion of 
recommended items in the 
top-K list that are relevant. It 
emphasizes accuracy at the top 
of the recommendation list, 
which is critical for user 
engagement in real-world 
applications. 

RECALL@K Calculates the proportion of a user's 
relevant items that are 
successfully retrieved in the 
top-K recommendations. Recall 
is important for evaluating the 
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comprehensiveness of a model’s 
recommendations. 

NDCG@K Assesses not only whether relevant 
items are recommended but also 
their ranking positions, with 
higher relevance assigned to 
items appearing earlier in the 
list. NDCG balances both 
ranking quality and relevance 
retrieval. 

HIT RATE@K Measures the fraction of users for 
whom at least one relevant item 
appears in the top-K 
recommendations. It provides a 
simple, binary measure of 
success but does not account for 
how many relevant items were 
retrieved or their ranking. 

AVERAGE 
PRECISION @K 

Computes the mean of the precision 
scores at the ranks where 
relevant items are found. It 
rewards models that retrieve 
relevant items earlier and more 
consistently across the ranked 
list. However, since it is highly 
correlated with NDCG and less 
interpretable for a general 
audience, we treat it as a 
secondary metric. 

 

Given the wide range of evaluation criteria, we categorize 
them into primary and secondary metrics based on their 
importance for our analysis. We designate precision, 
recall and NDCG as primary because they jointly capture 
the key dimensions of recommendation system quality: 
accuracy, coverage, and ranking effectiveness. Hit rate 
and average precision will be used as secondary metrics to 
offer supplementary insights.  

For all metrics, we computed results at  to 𝐾 = 5, 10, 20
capture recommendation performance across different list 
lengths. However, for consistency and clarity in this 
report, we primarily present results at  as it strikes 𝐾 = 10
a balance between short-list precision and broad coverage. 
A top-10 recommendation list is also commonly used in 
real-world platforms, making it a practical and 
interpretable standard. 

5.2 ​ Model Performance 

Table 1. Primary Metrics (Precision@10 and Recall@10 as 
percentages, NDCG@10 scaled 0-1)  

DATA SET PRECISION (%) RECALL (%) NDCG 

POPULARITY 3.80 2.67 0.0410 
USER-BASED CF 9.40 6.29 0.1058 
ITEM-BASED CF 9.81 6.40 0.1108 
ALS (IMPLICIT) 7.64 5.92 0.0867 
LIGHTFM 

HYBRID 
2.95 1.74 0.0325 

Table 2. Secondary Metrics (Hit Rate @10 and Average 
Precision@10 as percentages)  

DATA SET HIT RATE (%) AVERAGE PRECISION (%) 

POPULARITY 26.72 1.57 
USER-BASED CF 50.74 4.79 
ITEM-BASED CF 50.24 5.21 
ALS (IMPLICIT) 48.78 3.57 
LIGHTFM 

HYBRID 
22.88 1.20 

 

Several observations can be made from these results. 

5.2.1 ​ Popularity vs Personalized Methods 

All three pure collaborative filtering models (UserCF, 
ItemCF, ALS) significantly outperformed the popularity 
baseline. This confirms that personalization adds 
substantial value: recommending movies tailored to a 
user’s own history is much more effective than simply 
recommending the globally popular titles​. The baseline, 
while recommending well-liked movies, often suggests 
films a user has already seen or is not interested in 
(perhaps due to genre preferences), hence the low 
precision. In contrast, the personalized methods filter out 
movies the user has rated and focus on ones that align 
with their profile, yielding more hits. 

5.2.2 ​ UserCF vs ItemCF 

Item-based collaborative filtering slightly outperformed 
user-based collaborative filtering across all measured 
metrics. Both models used the same neighborhood size 
(K=10) and cosine similarity, but ItemCF had an edge 
likely because item similarities are more robust: popular 
movies accumulate richer user interaction data, while user 
profiles are often sparser. Additionally, ItemCF can 
recommend items similar to what a user has liked, even if 
their immediate neighbors have not rated them, offering a 
broader and more reliable candidate pool. In practice, 
while both methods often overlapped on popular 

 



Movie Recommendation Systems: An Empirical Comparison of Collaborative, Matrix Factorisation, and Hybrid 
Methods 

 
recommendations, ItemCF showed better ranking of niche 
items. For instance, in one case, UserCF recommended a 
widely known action movie, whereas ItemCF successfully 
surfaced a slightly less popular film closely aligned to the 
user's past preferences, which was present in their test set. 
This highlights ItemCF’s strength in capturing 
fine-grained item associations. 

5.2.3 ​ ALS (Implicit MF) performance 

The ALS matrix factorization model showed reasonable 
performance, outperforming the popularity baseline but 
falling slightly behind both user-based and item-based 
collaborative filtering on key metrics. At , ALS 𝐾 = 10
achieved a lower performance than the 
neighborhood-based methods but still substantially higher 
than the non-personalized baseline. Its NDCG@10 score 
of 0.0867 indicates that relevant items were ranked 
reasonably well, although not as highly prioritized as in 
UserCF or ItemCF. ALS performed particularly well in 
terms of Recall@20 (not shown here), suggesting its 
strength in retrieving a broader set of relevant items. This 
reflects the model’s ability to uncover latent user 
preferences beyond direct co-occurrence. However, 
because ALS distributes preference scores across all 
items, it can sometimes prioritize less relevant items 
compared to memory-based methods that rely on direct 
similarity. Overall, ALS provided a good balance between 
coverage and personalization, though it was slightly less 
precise in surfacing top-ranked recommendations in this 
dataset. 

5.2.4 ​ LightFM Hybrid performance 

The LightFM hybrid model, while designed to leverage 
both collaborative signals and content-based metadata, 
underperformed relative to the other models across all 
evaluation metrics. At , it achieved a lower 𝐾 = 10
performance than even the non-personalized popularity 
baseline. Its NDCG@10 score of 0.0325 further reflects 
that relevant items were not well prioritized in the 
recommendation rankings. This performance suggests 
that, in this setting, the hybrid model struggled to 
effectively integrate the available metadata into 
meaningful recommendations. Several factors could 
explain this outcome: the side information from DBpedia 
and user demographics may have been too sparse or 
noisy, or the model may have been under-trained due to 
limited epochs or suboptimal hyperparameter settings. 
Despite its lower precision, LightFM still holds practical 
advantages, particularly its ability to recommend new or 
less-interacted items based on content features, which 
traditional collaborative filtering models cannot handle. 
However, in this project’s offline evaluation focused on 
known-user known-item interactions, LightFM was less 

effective compared to memory-based and matrix 
factorization approaches. 

6. ​ Limitations and Future Work 

Although this project provides valuable insights into 
various recommender system methods, it is subject to 
several limitations. Firstly, our evaluation relied 
exclusively on offline metrics computed from historical 
interaction data, which may not fully capture user 
satisfaction or real-world recommendation quality. 
Metrics like precision and recall do not explicitly measure 
user-perceived novelty, diversity, or serendipity, all of 
which significantly influence user experience in practical 
scenarios. 

Secondly, the performance of hybrid models, specifically 
LightFM, heavily depends on the quality, completeness, 
and relevance of metadata. In this project, the metadata 
sourced from DBpedia was limited and potentially noisy, 
which may have adversely impacted the hybrid model's 
effectiveness. Additionally, hyperparameter tuning and 
extensive experimentation were constrained by available 
resources and time, potentially leaving room for 
performance improvements across all models. 

Future work could address these limitations by integrating 
more robust evaluation frameworks, such as online A/B 
testing or user studies, to measure real-world user 
engagement directly. Further enrichment of 
metadata—perhaps leveraging richer or domain-specific 
data sources—could also enhance the performance of 
hybrid models. Additionally, exploring advanced 
recommendation techniques like deep-learning-based 
models (e.g., Neural Collaborative Filtering, graph neural 
networks, or transformers) may provide stronger 
performance, particularly at scale. Finally, incorporating 
techniques specifically targeting recommendation 
diversity and novelty, such as diversification algorithms 
or re-ranking strategies, would align recommendation 
outcomes more closely with realistic user preferences and 
expectations. 

7. ​ Conclusion 

In this project, we systematically explored and compared 
several recommender system approaches using the 
MovieLens dataset enriched with external metadata. Our 
analysis demonstrated that personalized collaborative 
filtering methods, notably item-based CF, consistently 
achieved strong performance, substantially outperforming 
the popularity baseline in key metrics such as 
Precision@10 and NDCG@10. The ALS matrix 
factorization method offered a robust alternative, 
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particularly effective in uncovering latent user 
preferences, although with slightly lower top-ranked 
accuracy compared to memory-based approaches. 
Meanwhile, the hybrid model (LightFM), despite its 
lower numerical performance in this setting, showed 
potential value in addressing cold-start problems and 
enhancing diversity when richer and more comprehensive 
metadata is available. 

The findings underline the importance of selecting 
recommendation approaches aligned to specific 
real-world contexts—considering factors such as data 
availability, scalability requirements, explainability, and 
cold-start scenarios. While our evaluation provided 
valuable insights through offline metrics, future studies 
incorporating user studies or online A/B testing would 
offer deeper understanding into real-world user 
engagement and satisfaction. Overall, this exploration 
significantly deepened our understanding of recommender 
systems, highlighting both their practical applicability and 
areas for future improvement. 
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