Movie Recommendation Systems: An Empirical Comparison of Collaborative,
Matrix Factorisation, and Hybrid Methods

Tan Yongjun, Kuan Kai Xuan Keefe, Sui Wei Xian Ryan, Darrell Goh Rui Jie

Abstract

Recommender systems play a crucial role in
guiding user engagement on content platforms.
This paper explores various recommendation
approaches using the MovieLens 1M dataset
enriched with DBpedia metadata. We implement
and compare a popularity baseline, user-based
and item-based collaborative filtering, matrix
factorisation with implicit Alternating Least
Squares (ALS), and a hybrid LightFM model.
Models are evaluated using Precision@K,
Recall@K, and NDCG@K. Our findings
demonstrate the value of personalised
approaches over non-personalised baselines, and
highlight the trade-offs between pure
collaborative, matrix factorisation, and hybrid
techniques, particularly regarding cold-start
handling and diversity. Code and data can be
found here:
https://github.com/Keefekkx/Movie-Recommend
er

1. Introduction
1.1 Background

Recommender systems have become a vital component of
many online platforms, helping users discover relevant
content in the face of information overload. In the movie
domain, recommendation engines drive user engagement
on streaming services and e-commerce sites by
personalizing content to individual tastes. Collaborative
filtering (CF) and content-based filtering are the two
classic approaches to recommendation. Collaborative
filtering leverages patterns of user behavior, operating on
the principle that users with similar past preferences will
enjoy similar items. In contrast, content-based filtering
relies on item features, recommending items that are
similar in content (e.g. genre, actors, etc.) to those a user
liked before. Each approach has its limitations:
collaborative methods struggle with new users or items
(the cold-start problem) since they have no prior
interactions, while content-based methods can only
recommend items that share obvious attributes with a
user’s history and may not capture subtle taste

similarities. To address these limitations, hybrid
recommender systems combine collaborative and
content-based techniques. In fact, many production

systems (such as Netflix’s prize-winning algorithm) use a
hybrid approach to achieve both accuracy and novelty in
recommendations.

1.2 Objective

This project is an exploratory study of different
recommendation algorithms, with an emphasis on
understanding their mechanics and evaluating their
performance on a real-world dataset. We implement five
models of increasing complexity: (1) a Popularity
baseline that recommends top-rated movies to everyone,
(2) User-based CF and (3) Item-based CF using
neighborhood similarity, (4) an implicit feedback ALS
matrix factorization model, and (5) a LightFM hybrid
model that incorporates both collaborative signals and
content features. We evaluate these models on a held-out
test set using ranking metrics that reflect the quality of the
top recommendations. Rather than trying to crown a
single “best” model, we analyze the pros and cons of
each, considering factors like accuracy, coverage,
personalization, and real-world deployment
considerations. Through this comparative analysis, we
aim to derive insights into how recommendation
algorithms work and how they can be applied or
combined in practical applications.

2. Dataset and Data Preprocessing
2.1 Data Overview

We use the MovieLens 1M dataset, which consists of
1,000,209 anonymous ratings (on a 5-star scale) from
6,040 users for 3,883 movies. Each user has rated at least
20 movies, and each rating is accompanied by a
timestamp. The dataset also provides basic user attributes
(age group, gender, occupation, and zipcode) and movie
attributes (title and genres). The user rating matrix is very
sparse — out of the ~22 million possible user-movie
combinations, only about 4.5% are observed as ratings,
meaning over 95% of the matrix is empty. This level of
sparsity is typical in recommender system data and
reflects the reality that each user only interacts with a tiny
subset of all items.

Movie Recommendation Systems: An Empirical Comparison of Collaborative, Matrix Factorisation, and Hybrid
Methods

To enable content-based and hybrid recommendations, we
augmented the MovieLens data with additional movie
metadata from DBpedia. DBpedia is a project that extracts
structured information from Wikipedia. For each movie in
the dataset, we used a pre-existing mapping from
MovieLens to DBpedia to retrieve attributes such as the
movie’s director(s), top cast (actors), country of origin,
and original language. These attributes provide a richer
description of each movie. We collected such information
via SPARQL queries to the DBpedia knowledge base and
merged it with the MovieLens movie list. This resulted in
a consolidated movies metadata table, where each movie
is described not only by its title and genre (from
MovieLens) but also by a set of content features from
DBpedia. These features are later used in the LightFM
hybrid model to represent items.

2.2 Positive Feedback & Cold-Start Filtering

In recommender systems, clearly distinguishing positive
user preferences from negative or neutral ones is essential
for accurately capturing tastes and providing meaningful
recommendations. In this project, ratings of 4 and 5 stars
were explicitly defined as positive interactions, reflecting
strong user preferences and genuine satisfaction. Ratings
below 4 stars (1-3 stars) were excluded, as they typically
indicate neutral or negative sentiment—suggesting
weaker enthusiasm, ambiguity, or explicit dissatisfaction.
By isolating these high-confidence positive ratings, we
enable the recommender models to learn effectively from
interactions where the user's interest is clearly signaled.
Additionally, each positive interaction was assigned a
confidence weight: interactions rated 5 stars received a
weight of 1.0, indicating strong certainty of preference,
while 4-star interactions received a slightly lower weight
of 0.5. These weighted interactions form critical inputs for
the subsequent modeling stages.

Furthermore, we addressed the cold-start problem, which
often affects the reliability of collaborative filtering
algorithms due to insufficient interaction data for new or
inactive users and unpopular items. Specifically, we
removed users and items with very few positive
interactions—the bottom 10% of least active users and
least popular movies (based on the count of positive
ratings). By filtering out these sparse interactions, we
improved data quality and ensured that our
recommendation algorithms had adequate data points to
generate reliable predictions. After this cold-start filtering
process, our dataset contained 5,390 users and 3,125
movies, encompassing 565,817 high-confidence ratings.
This preprocessing step provided a robust foundation for
meaningful comparative analysis across different
recommender models.

2.3 Train-Test Split

To rigorously evaluate our recommender models, we
partitioned the data into distinct training and test sets.
Specifically, we performed an 80/20 chronological split
per user to closely simulate real-world recommendation
scenarios and prevent temporal leakage. For each user,
interactions (ratings) were sorted by timestamp, and the
most recent 20% were designated as the test set, while the
earlier 80% formed the training set. This approach mimics
the practical task of recommending new movies based on
previously observed interactions, thereby ensuring the
models are evaluated on their ability to predict future user
preferences. After applying this splitting strategy, our
final training set contained 450,543 interactions, and the
test set comprised 115,274 interactions. All interactions in
the test set were treated as relevant items, representing
movies that users actively chose and rated in the future.
During evaluation, a recommendation was considered
successful if it retrieved a movie from the user's test set,
aligning with standard practice in implicit feedback
settings where observed future interactions are assumed to
reflect user preferences.

2.4 Feature Engineering for Hybrid Modeling

To construct feature representations for hybrid
recommendation modeling, we engineered item features
and user features based on available metadata. For item
features, we utilized attributes such as genres, actors,
languages, and countries from the processed movie
metadata. Each categorical field was multi-hot encoded,
while movie titles were transformed into TF-IDF vectors
(limited to the top 500 terms) to capture textual
information. Additionally, release years were discretized
into decade bins and encoded using one-hot encoding to
model temporal characteristics. The resulting item feature
matrix was a sparse concatenation of all encoded
components.

Similarly, for user features, we leveraged demographic
information from the MovieLens dataset, including
gender and occupation, both of which were one-hot
encoded. Age was grouped into discrete bins (e.g., 18-25,
25-35, etc.) and likewise one-hot encoded to handle age
as a categorical feature. Both the item and user feature
matrices were sparsely constructed to ensure memory
efficiency and compatibility with hybrid models like
LightFM, which can exploit these rich side features
during training.

3. Exploratory Data Analysis (EDA)

Before building models, we conducted an exploratory
data analysis (EDA) to understand the characteristics of

Movie Recommendation Systems: An Empirical Comparison of Collaborative, Matrix Factorisation, and Hybrid
Methods

the MovieLens 1M dataset and the enriched metadata
from DBpedia. This analysis provided essential context
for the challenges a recommender system must address.

3.1 Rating Distribution

The distribution of movie ratings is positively skewed
(Figure 1). Users are much more likely to give favourable
ratings: 4-star ratings are the most frequent, followed by
3-star and S5-star ratings. The mean rating across the
dataset is approximately 3.5 out of 5. This strong positive
bias suggests that many movies in the dataset are regarded
favourably, and that a random selection of high-rated
movies might still yield moderate user satisfaction.
However, this also introduces risk: models optimising
purely for predicting high ratings may not necessarily
offer meaningful personalisation.
Rating Distribution

348,971

350000

300000

261,197
250000

226,310

+ 200000
3
Q
o
150000
107,557

100000

56,174

50000

o

1 2 3
Rating

Figure 1: Rating distribution showing counts of each
rating from 1 to 5.

Additionally, because there are significantly more positive
than negative ratings, any supervised model training must
account for this imbalance to avoid trivial solutions (e.g.,
always predicting 4 stars).

3.2 User-Item Interaction Sparsity

The user-item interaction matrix is extremely sparse. Only
around 3.3% of all possible user-movie pairs contain a
positive rating (>4 stars).

To better visualise engagement patterns, we plot the
distributions of rating counts per user and per item on a
log scale (Figure 2). Most users have rated relatively few
movies, while a few highly active users have rated
hundreds. Similarly, most movies are rated by only a
handful of users, whereas blockbuster films accumulate
thousands of ratings. This long-tail behaviour is a
fundamental characteristic of recommendation datasets.

User Interaction Count Distribution (Log Scale)
0.010
0.008
£ 0,006 -
i /
&
00041 =
0.002 4
0.000 T -
10° 10? 10? 10°
Number of Ratings per User (log scale)
Item Interaction Count Distribution (Log Scale)
0.005
0.004
z
G 0.003
[=4
'
o
0.002
0.001 -
0.000 -
10! 102 10

Number of Ratings per Item (log scale)

Figure 2: (Top) Density distribution of number of ratings
per user

(Bottom) Density distribution of number of ratings per
item, both shown in log-log scale

These patterns indicate that methods must generalise from
sparse data. Popularity-based methods risk focusing only
on a small subset of blockbuster movies, while
collaborative filtering models must infer user preferences
from limited interactions.

33 Genre Distribution

We analysed the distribution of genres across movies
(Figure 3). Drama, Comedy, and Action dominate the
dataset, with Drama appearing in more than 1,600
movies. Less frequent genres include Adventure, Sci-Fi,
and Crime.

Top 10 Movie Genres

1600

1400

1200

1000

Number of Movies

3]

< N
- @“\56 o o wﬁ\m& o €

o © ¢ - e
= s O\\\&g\\ G

Genre

Figure 3: Top 10 genres by number of movies.

The genre imbalance implies that content-based
recommendation approaches might unintentionally favour

Movie Recommendation Systems: An Empirical Comparison of Collaborative, Matrix Factorisation, and Hybrid
Methods

more common genres unless corrective mechanisms are
applied.

3.4 Top Directors and Actors

We explored metadata on directors and actors. Alfred
Hitchcock, Woody Allen, and Steven Spielberg are among
the most prolific directors in the dataset (Figure 4). For
actors, frequent appearances include ensembles such as
those involved in Star Wars and Monty Python films
(Figure 5).

Top 10 Directors by Number of Movies

Alfred_Hitchcock
Woody_Allen
Steven_Spielberg
Spike_Lee

% Robert_Stevenson
I
a8 Joel_Schumacher

Clint_Eastwood

Richard_Donner
Barry_Levinson

John_Carpenter

10 15 20 25
Number of Movies

IR

] 5

Figure 4: Top 10 directors by number of unique movies
directed.

Top 10 Actors by Number of Movies

Sean_Connery 24
Whoopi_Goldberg 24
Robin_williams 24
Harvey Keitel 2
5 Robert_De_Niro 23
S
< Demi_Moore 2
Samuel_L._Jackson 21
Danny_DeVito 21
Gene_Hackman 20
[} 5 10 15 20 25

Number of Movies

Figure 5: Top 10 actors by number of unique movies
acted in.

Incorporating information about directors and actors can
enhance content-based and hybrid models by capturing
implicit user preferences for certain filmmakers or
performers.

3.5 Genre Co-occurrence
To understand how different genres are related within the

MovieLens 1M dataset, we constructed a genre
co-occurrence matrix. Each movie may belong to multiple

genres (e.g., Action and Sci-Fi), and we analysed the
frequency with which genres appear together.

Genre Co-occurrence Heatmap (Percentage)

Action - 0.0 102 03 10 5.2 44 0.0 8.0 12 0.0 2.0 02 10 28 85 106 37 08

Horror - 4.4 14 02 0.2 7.2 S H 0.0 21 0.0 02 0.0 0.4 11 05 102 104 0.0 0.0

Thriller 13230 2.8 04 0.1 28 5.3 00 100 o1 18 5.4 0.0 45 3.0 6.4 0.0 07 0.1

Warr‘lS.A‘J.S 0.6 0.6 5.2 0.0 03 pFEW 0.3 0.0 0.0 09 0.0 5.8 32 23 0.0 03
X

@ & ¢ &
& & S s
& &

v«}\é*’b
¥ &

$
&

P A s
&
S ¥

S & & &S
& & &

&

Figure 6: Genre Co-occurrence

Figure 6 shows the resulting heatmap. Each row of the
heatmap is normalised relative to the total number of
movies in the row's genre. Therefore, the percentages
represent, for a given originating genre, the proportion of
its movies that also belong to each column genre. Brighter
colours indicate stronger associations between genres. We
observe several notable patterns:

Action movies frequently co-occur with Science Fiction
(15.2%), and also with Adventure (10.2%), suggesting
that Action/Sci-Fi-Adventure is a common thematic
cluster prevalent in blockbuster films.

Comedy and Romance genres often appear together, with
Comedy co-occurring with Romance at 10.7%, and
Romance reciprocating with Comedy at 19.2%, reflecting
the prevalence of romantic comedies.

Drama shows moderate co-occurrence with Thriller
(10.0%) and Crime (8.7%), consistent with narratives that
blend emotional depth with suspenseful or criminal
elements.

We zeroed the self-co-occurrence diagonals to focus
attention on cross-genre relationships. These observations
are important for content-based and hybrid recommender
systems, where understanding genre correlations can
enhance the quality and diversity of recommendations.

4. Methodology

Movie Recommendation Systems: An Empirical Comparison of Collaborative, Matrix Factorisation, and Hybrid
Methods

We implemented five recommendation algorithms, each
representing a different approach: a popularity-based
non-personalized model, two memory-based collaborative
filtering models (user-user and item-item), a model-based
collaborative filtering technique = (ALS matrix
factorization), and a hybrid collaborative-content model
(LightFM). In this section, we describe each method,
explaining how it works and what assumptions it makes
about user behavior.

4.1 Popularity Baseline

The Popularity baseline recommender serves as a
straightforward evaluation benchmark. It suggests the
same set of top-N movies to all users, ranking movies by
the number of 4- or 5-star ratings received in the training
data. This approach captures overall user preference,
recommending widely liked films such as Star Wars, The
Godfather, or Titanic to any user who has not already
rated them. Although simplistic, popularity-based
recommendations often perform reasonably well, as
popular content tends to appeal broadly. The model is
immune to the user cold-start problem, making it
immediately applicable even for new users with no prior
interactions. However, it lacks personalization, failing to
serve users with niche interests, and tends to reduce
recommendation diversity by amplifying already popular
items. We include the popularity baseline in our
evaluation to demonstrate the performance gains achieved
by more sophisticated, personalized algorithms
Nonetheless, popularity-based strategies often remain a
critical fallback component in hybrid recommendation
systems, especially for handling new users.

4.2 User-Based Collaborative Filtering (UserCF)

UserCF is a classic memory-based recommendation
approach that generates suggestions for a user based on
the preferences of “similar” users. The core idea is that
like-minded users tend to enjoy similar items. In our
implementation, we constructed a user—user similarity
matrix from the training data, where each user was
represented by a vector of positively interacted movies
(rated 4 or 5 stars). Pairwise similarities between users
were computed using cosine similarity, weighted
according to the user's confidence (assigning higher
weight to 5-star ratings). For a given target user, we
identified the top-K most similar users (K = 10) and
aggregated their preferences to generate
recommendations. Specifically, candidate movies were
scored by summing the neighbors' weighted interactions,
adjusted by similarity to the target user. Movies highly
liked by similar users but not yet rated by the target user
received higher scores and were ranked accordingly.

This method operates under the assumption that users
with similar historical preferences will continue to like
similar content. For instance, if two users share a love for
classic sci-fi films (Star Wars, Alien), and one user has
enjoyed Blade Runner, the model would recommend
Blade Runner to the other user even without direct
knowledge of the movie's content. While user-based CF
offers personalization and transparency, as
recommendations are easily explained through similar
users, it faces scalability challenges as the user base
grows. Similarity calculations can also be noisy when
users have rated only a few items, potentially leading to
unreliable recommendations. We mitigated this by
applying cold-start filtering and selecting a reasonably
large neighborhood size (K=10). Overall, user-based CF
is expected to significantly outperform a popularity-based
baseline, particularly for users with niche or distinctive
preferences.

4.3 Item-Based Collaborative Filtering (ItemCF)

ItemCF inverts the user-based approach by focusing on
similarities between items rather than users. Popularized
by systems like Amazon’s “customers who bought this
item also bought...” feature, the method assumes that
items liked by similar groups of users are likely to be
similar. Specifically, we computed pairwise cosine
similarities between movies, treating each movie as a
vector of users who positively rated it. For a target user,
recommendations are generated by identifying movies
similar to those the user has previously liked. Each
candidate movie is scored by aggregating its similarity to
the user's liked movies—using a weighted sum of
similarities—and the top-N candidates are ranked
accordingly. For example, if a user enjoyed Toy Story and
Finding Nemo, the model would recommend The Lion
King if it shares high similarity with those favorites.

Item-based CF operates under the assumption that user
preferences are stable across similar items. It offers
practical advantages: the item-item similarity matrix can
be precomputed offline, and item similarities tend to be
more statistically robust than user similarities, as popular
items attract ratings from many users. Consequently,
ItemCF is often more scalable and stable than user-based
CF, especially in larger systems. In our dataset, where
both user and item counts are moderate, we expect
item-based CF to slightly outperform user-based CF,
consistent with literature findings. Moreover, it handles
the user cold-start problem relatively well (as long as the
user has rated at least one movie), though it still suffers
from item cold-start limitations, where new movies with
no ratings cannot be recommended until they accumulate
interactions.

Movie Recommendation Systems: An Empirical Comparison of Collaborative, Matrix Factorisation, and Hybrid
Methods

4.4 ALS Matrix Factorisation

For a more model-driven approach, we implemented
Alternating Least Squares (ALS) matrix factorization for
implicit feedback. Matrix factorization is a model-based
collaborative filtering method that embeds both users and
items in a low-dimensional latent space. The idea is that
each user is represented by a vector of latent factors and
each item by a vector of latent factors, such that the dot
product of a user’s vector and an item’s vector predicts
the user’s preference for that item. In our case, we have
implicit feedback (user likes/dislikes), so we use the
approach of Hu, Koren, and Volinsky (2008) which adapts
ALS to implicit data with confidence weights.

We constructed a binary preference matrix P, where
Plu, i] = 1 if user u positively interacted with item i, and
0 otherwise. A corresponding confidence matrix C was
also built, assigning higher weights to interactions with
greater certainty (scaled by rating confidence). ALS
minimizes a weighted regularized loss function,
alternating between solving for user and item latent
vectors. Intuitively, it learns user and item embeddings
such that their dot product approximates the observed
interaction strength. We used an existing library
implementation of ALS (from the implicit Python library)
and set the number of latent factors to 64 with
regularization to prevent overfitting, and ran for 30
iterations.

After training, recommendations are generated by ranking
the dot product scores between a user's latent vector and
all unseen item vectors. ALS is particularly effective at
capturing subtle, latent relationships that might not be
visible from direct co-occurrence, enabling it to
generalize well beyond exact neighbor matches. The
advantages of ALS include its ability to scale to large
datasets through parallelized updates and its capacity to
infer missing preferences by exploiting latent structure.
However, its limitations include behaving as a black-box
model, making interpretation challenging and it also
struggles with cold-start users or items, since factorization
requires observed interactions to learn meaningful
embeddings.

4.5 LightFM Hybrid Model

LightFM is a hybrid recommendation model that
combines collaborative filtering with content-based
information by jointly learning embeddings for users,
items, and their associated features. Unlike pure
collaborative models that rely solely on interaction
patterns, LightFM incorporates metadata (such as genres,
actors, directors, country, and language for movies, and
demographics for users) to enhance recommendations,
particularly in cold-start scenarios.

In our implementation, each user was represented by their
ID and features such as gender, age group, and
occupation. Each movie was represented by its ID along
with enriched features retrieved from DBpedia, including
genres, director, actors, country, and language. LightFM
learns latent vectors for users, items, and features
simultaneously, and predicts the affinity between a user
and an item as the sum of their interactions in the latent
space. The model was trained using the WARP (Weighted
Approximate-Rank Pairwise) loss, which directly
optimizes ranking quality by prioritizing correct ordering
of positive over negative examples. We also trained the
LightFM model for 10 epochs with 128 latent components
(factors) and a moderate learning rate.

This hybrid approach offers several advantages. By
leveraging content features, LightFM can alleviate
cold-start issues for new users and items and increase
recommendation diversity beyond what pure collaborative
signals allow. It can recommend new movies based on
shared metadata even if they have few or no historical
ratings. However, the inclusion of many features can also
introduce noise if irrelevant attributes dilute the strength
of collaborative signals. Moreover, LightFM’s
effectiveness heavily depends on the quality and
informativeness of the feature engineering.

5. Results & Discussion
5.1 Evaluation Metrics

To comprehensively assess the performance of our
recommendation models, we computed multiple
ranking-based metrics. These metrics evaluate both the
ability of the models to retrieve relevant items and the
quality of the ranking order. Their definitions are
summarised in Table 1 below.

Table 1. Definitions of different evaluation metrics

METRIC Definition

PrecisioN@K Measures the proportion of
recommended items in the
top-K list that are relevant. It
emphasizes accuracy at the top
of the recommendation list,
which is critical for user
engagement in real-world
applications.

Calculates the proportion of a user's
relevant items that are
successfully retrieved in the
top-K recommendations. Recall
is important for evaluating the

RecaLL@K

Movie Recommendation Systems: An Empirical Comparison of Collaborative, Matrix Factorisation, and Hybrid
Methods

comprehensiveness of a model’s
recommendations.

Assesses not only whether relevant
items are recommended but also
their ranking positions, with
higher relevance assigned to
items appearing earlier in the
list. NDCG balances both
ranking quality and relevance
retrieval.

Measures the fraction of users for
whom at least one relevant item
appears in the top-K
recommendations. It provides a
simple, binary measure of
success but does not account for
how many relevant items were
retrieved or their ranking.

Computes the mean of the precision
scores at the ranks where
relevant items are found. It
rewards models that retrieve
relevant items earlier and more
consistently across the ranked
list. However, since it is highly
correlated with NDCG and less
interpretable for a general
audience, we treat it as a
secondary metric.

NDCG@K

Hit Ratre@K

AVERAGE
Precision @K

Given the wide range of evaluation criteria, we categorize
them into primary and secondary metrics based on their
importance for our analysis. We designate precision,
recall and NDCG as primary because they jointly capture
the key dimensions of recommendation system quality:
accuracy, coverage, and ranking effectiveness. Hit rate
and average precision will be used as secondary metrics to
offer supplementary insights.

For all metrics, we computed results at K = 5,10, 20 to
capture recommendation performance across different list
lengths. However, for consistency and clarity in this
report, we primarily present results at K = 10 as it strikes
a balance between short-list precision and broad coverage.
A top-10 recommendation list is also commonly used in
real-world platforms, making it a practical and
interpretable standard.

5.2 Model Performance

Table 1. Primary Metrics (Precision@10 and Recall@10 as
percentages, NDCG@10 scaled 0-1)

Data SET Precision (%) RecaLL (%) NDCG

PopuLARITY 3.80 2.67 0.0410

UsER-BASED CF 9.40 6.29 0.1058

ITem-BASED CF 9.81 6.40 0.1108

ALS (ImpLiciT) 7.64 5.92 0.0867

LiGHTFM 2.95 1.74 0.0325
HyBRID

Table 2. Secondary Metrics (Hit Rate @10 and Average
Precision@10 as percentages)

Darta SET Hit RatE (%) AVERAGE PRECISION (%)
POPULARITY 26.72 1.57
UsEer-BaseDp CF 50.74 4.79
ITEM-BASED CF 50.24 5.21
ALS (ImpLicCIT) 48.78 3.57
LicutFM 22.88 1.20

HyBRID

Several observations can be made from these results.

5.2.1 Popularity vs Personalized Methods

All three pure collaborative filtering models (UserCF,
ItemCF, ALS) significantly outperformed the popularity
baseline. This confirms that personalization adds
substantial value: recommending movies tailored to a
user’s own history is much more effective than simply
recommending the globally popular titles. The baseline,
while recommending well-liked movies, often suggests
films a user has already seen or is not interested in
(perhaps due to genre preferences), hence the low
precision. In contrast, the personalized methods filter out
movies the user has rated and focus on ones that align
with their profile, yielding more hits.

5.2.2 UserCF vs ItemCF

Item-based collaborative filtering slightly outperformed
user-based collaborative filtering across all measured
metrics. Both models used the same neighborhood size
(K=10) and cosine similarity, but ItemCF had an edge
likely because item similarities are more robust: popular
movies accumulate richer user interaction data, while user
profiles are often sparser. Additionally, ItemCF can
recommend items similar to what a user has liked, even if
their immediate neighbors have not rated them, offering a
broader and more reliable candidate pool. In practice,
while both methods often overlapped on popular

Movie Recommendation Systems: An Empirical Comparison of Collaborative, Matrix Factorisation, and Hybrid
Methods

recommendations, I[temCF showed better ranking of niche
items. For instance, in one case, UserCF recommended a
widely known action movie, whereas ItemCF successfully
surfaced a slightly less popular film closely aligned to the
user's past preferences, which was present in their test set.
This highlights ItemCF’s strength in capturing
fine-grained item associations.

5.2.3 ALS (Implicit MF) performance

The ALS matrix factorization model showed reasonable
performance, outperforming the popularity baseline but
falling slightly behind both user-based and item-based
collaborative filtering on key metrics. At K = 10, ALS
achieved a lower performance than the
neighborhood-based methods but still substantially higher
than the non-personalized baseline. Its NDCG@10 score
of 0.0867 indicates that relevant items were ranked
reasonably well, although not as highly prioritized as in
UserCF or ItemCF. ALS performed particularly well in
terms of Recall@20 (not shown here), suggesting its
strength in retrieving a broader set of relevant items. This
reflects the model’s ability to uncover latent user
preferences beyond direct co-occurrence. However,
because ALS distributes preference scores across all
items, it can sometimes prioritize less relevant items
compared to memory-based methods that rely on direct
similarity. Overall, ALS provided a good balance between
coverage and personalization, though it was slightly less
precise in surfacing top-ranked recommendations in this
dataset.

5.2.4 LightFM Hybrid performance

The LightFM hybrid model, while designed to leverage
both collaborative signals and content-based metadata,
underperformed relative to the other models across all
evaluation metrics. At K = 10, it achieved a lower
performance than even the non-personalized popularity
baseline. Its NDCG@10 score of 0.0325 further reflects
that relevant items were not well prioritized in the
recommendation rankings. This performance suggests
that, in this setting, the hybrid model struggled to
effectively integrate the available metadata into
meaningful recommendations. Several factors could
explain this outcome: the side information from DBpedia
and user demographics may have been too sparse or
noisy, or the model may have been under-trained due to
limited epochs or suboptimal hyperparameter settings.
Despite its lower precision, LightFM still holds practical
advantages, particularly its ability to recommend new or
less-interacted items based on content features, which
traditional collaborative filtering models cannot handle.
However, in this project’s offline evaluation focused on
known-user known-item interactions, LightFM was less

effective compared to memory-based and matrix
factorization approaches.

6. Limitations and Future Work

Although this project provides valuable insights into
various recommender system methods, it is subject to
several limitations. Firstly, our evaluation relied
exclusively on offline metrics computed from historical
interaction data, which may not fully capture user
satisfaction or real-world recommendation quality.
Metrics like precision and recall do not explicitly measure
user-perceived novelty, diversity, or serendipity, all of
which significantly influence user experience in practical
scenarios.

Secondly, the performance of hybrid models, specifically
LightFM, heavily depends on the quality, completeness,
and relevance of metadata. In this project, the metadata
sourced from DBpedia was limited and potentially noisy,
which may have adversely impacted the hybrid model's
effectiveness. Additionally, hyperparameter tuning and
extensive experimentation were constrained by available
resources and time, potentially leaving room for
performance improvements across all models.

Future work could address these limitations by integrating
more robust evaluation frameworks, such as online A/B
testing or user studies, to measure real-world user
engagement directly. Further enrichment of
metadata—perhaps leveraging richer or domain-specific
data sources—could also enhance the performance of
hybrid models. Additionally, exploring advanced
recommendation techniques like deep-learning-based
models (e.g., Neural Collaborative Filtering, graph neural
networks, or transformers) may provide stronger
performance, particularly at scale. Finally, incorporating
techniques specifically targeting recommendation
diversity and novelty, such as diversification algorithms
or re-ranking strategies, would align recommendation
outcomes more closely with realistic user preferences and
expectations.

7. Conclusion

In this project, we systematically explored and compared
several recommender system approaches using the
MovieLens dataset enriched with external metadata. Our
analysis demonstrated that personalized collaborative
filtering methods, notably item-based CF, consistently
achieved strong performance, substantially outperforming

the popularity baseline in key metrics such as
Precision@10 and NDCG@10. The ALS matrix
factorization method offered a robust alternative,

Movie Recommendation Systems: An Empirical Comparison of Collaborative, Matrix Factorisation, and Hybrid
Methods

particularly effective in uncovering latent user
preferences, although with slightly lower top-ranked
accuracy compared to memory-based approaches.
Meanwhile, the hybrid model (LightFM), despite its
lower numerical performance in this setting, showed
potential value in addressing cold-start problems and
enhancing diversity when richer and more comprehensive
metadata is available.

The findings underline the importance of selecting
recommendation approaches aligned to specific
real-world contexts—considering factors such as data
availability, scalability requirements, explainability, and
cold-start scenarios. While our evaluation provided
valuable insights through offline metrics, future studies
incorporating user studies or online A/B testing would
offer deeper understanding into real-world user
engagement and satisfaction. Overall, this exploration
significantly deepened our understanding of recommender
systems, highlighting both their practical applicability and
areas for future improvement.

References

Harper, F. M., & Konstan, J. A. (2015). The MovieLens
datasets: History and context. ACM Transactions on
Interactive Intelligent Systems (TIIS), 5(4), Article 19.
https://doi.org/10.1145/2827872

Linden, G., Smith, B., & York, J. (2003). Amazon.com
recommendations: Item-to-item collaborative filtering.
IEEE Internet Computing, 7(1), 76-80.
https://doi.org/10.1109/MIC.2003.1167344

Hu, Y., Koren, Y., & Volinsky, C. (2008). Collaborative
filtering for implicit feedback datasets. In Proceedings
of the 2008 Eighth IEEE International Conference on
Data Mining (pp- 263-272). IEEE.
https://doi.org/10.1109/ICDM.2008.22

Kula, M. (2015). Metadata embeddings for user and item
cold-start recommendations. In Proceedings of the 2nd
Workshop on New Trends in Content-Based
Recommender Systems (CBRecSys) (pp. 14-21).
CEUR Workshop Proceedings.
https://arxiv.org/abs/1507.08439

IBM Cloud Education. (2024). What is collaborative
filtering? IBM Knowledge Center. Retrieved from
https://www.ibm.com/think/topics/collaborative-filterin

g

