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1. Representation Learning
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Representation learning

● We need to develop systems that read and understand text the way a person 
does, by forming a representation of the text, and other context information 
that humans create to understand a piece of text.  
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I eat an apple

Text Numerical Representation

The learned representation should capture 
high-level semantic and syntactic information.



History of NLP

● Now, neural nlp models are able to achieve state-of-arts results in all tasks. 
● Before neural nlp:

○ Symbolic NLP:  rule-based system (derived from linguistic)
○ Statistical NLP: data-driven and use statistical methods
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Symbolic NLP Statistical NLP Neural NLP

1950 - early 1990s 1990s - 2010s Present

?

Future



Statistical NLP

● Starting from Document-Term Matrix
○ It contains the co-occurrence information
○ Bag-of-Words: n-gram as features
○ TF-IDF: frequency of words to measure importance
○ Matrix Decomposition:

■ SVD->Latent Semantic Analysis
■ Probabilistic model-> Topic Model
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D0: I eat an apple every day
D1: I eat an orange every day
D2: I like driving my car to work

Corpus

Document-Term Matrix

Bag-of-Words Latent Semantic 
Analysis

Topic ModelsTF-IDF



Bag-of-Words
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Building Vocabulary: Tokenization -> Count unique set

Encoding Sentences into Vectors

Source: Hands-On Large Language Models

https://learning.oreilly.com/library/view/hands-on-large-language/9781098150952/


Limitations of BoW Vectors

● Too strong assumption: all words are independent of each other
○ | orange  - peach |  < | orange  - car |

● Can not capture the order information in the sequence

● High dimensionality due to large size of vocabulary
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A new perspective on BoW

● Each word in vocab is represented in one-hot embedding
● Sum one-hot vectors of the words in a sentence
● The final vector is the representation for the given sentence and then fed into 

a classifier. 
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I   eat    an   apple

Composition Function:
Sum

BoW 
Features 

Classification Models Labels

How to improve? 
One-hot 



Statistical NLP

● D3: apple car
○ Word vector: one-hot ones

■ Apple: 0 1 0 0 0 0 0 0 0 0 0 0 
■ Car:     0 0 1 0 0 0 0 0 0 0 0 0 

○ Sum of two word vectors
■ apple vec + car vec

○ Document vector:
■ 0 1 1 0 0 0 0 0 0 0 0 0 
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D0: I eat an apple every day
D1: I eat an orange every day
D2: I like driving my car to work

Corpus

Document-Term Matrix



Neural NLP
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https://www.kamperh.com/slides/ruder+kamper_indaba2018_talk.pdf



2.  Word Embeddings
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Word representation

● How to represent words in a vector space  
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Distributed representation

● Words should be encoded into a low-dimensional and dense vector
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Word vectors
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Project word 
vectors in a 
two-dimensional 
space. And 
visualize them!

Similar words 
are close to 
each other.



Word2Vec

● A method of computing vector representation of words developed by Google. 
● Open-source version of Word2Vec hosted by Google (in C)
● Train a simple neural network with a single hidden layer to perform word 

prediction tasks.
● Two structures proposed Continuous Bag of Words (CBoW) vs Skip-Gram
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Word2Vec as BlackBox
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Corpus Word2Vec Tool Word Embeddings

input, output



Use NN to predict word
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Input words Neural Network Output words

Self-supervised learning

Eat
banana 

apple

cake

hotpot

probabilities

vocab



A Good Visualization for Word2Vec
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https://ronxin.github.io/wevi/

https://ronxin.github.io/wevi/


Target

● Given a training corpus, we prepare a list of N (input_word, output_word).  
● Objective Function: Maximize probability of all the output words given the 

corresponding input words. 
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Neural network 
parameters that will 
be optimized



Model architecture

22From Xin Rong 2016

Vocab size Vocab sizeembedding size
hyperparameters



Input layer 
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Give the training pair: eat -> apple (given eat, predict apple)
● 8 unique words are in the corpus so that the input layer has 8 neurons
● The index of eat is 3 in the vocab
● The input vector of the x(eat) would be:

[0,0,1,0,0,0,0, 0]

Index of eat

One-hot vector 



Hidden layer 
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● Linear-activation function here
● 5 neurons are the word vec. dimensions
● This layer is operating as a ‘lookup’ table
● Input word matrix denoted as IVec
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Hidden Layer Weights 
Matrix

Word Vector Look Up 
Table

[0,0,1,0,0,0,0, 0]

Index of eat

One-hot vector 

0.96，1.5， 1.37， 0.34，1.04

Word vector for “eat”

This is a projection/look up process: given the index of the word, we take 
the ith row in the word vector matrix out 



Output layer
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● Softmax Classifier
● Output word matrix denoted as OVec

Word vector for “eat”

Output Layer Weights

Output Layer Weights Matrix 
A.K.A Output word vectors 
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1 by 5

5 by 8

Scores over 8 words

p(word|”eat”)

8  words

Probability 
Distribution



Output layer

26

● Softmax Classifier
● Output word matrix denoted as OVec

Output Layer Weights Matrix 
A.K.A Output word vectors 
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8  words

Word vector for “eat”

Output weights for “apple”

Probability that if you 
randomly pick a word 
nearby “eat”, that it is 
“apple”

p(apple|eat) 

e^(IVec[eat]*OVec[apple])

e^(IVec[eat]*OVec[apple]) + e^(IVec[eat]*OVec[juice]) + e^(IVec[eat]*OVec[drink])+...+e^(IVec[eat]*OVec[water])

5 features 5 
fe

at
ur

es



Word2Vec
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Then, we can 
compute the loss 
and call gradient 
descent to update 
model parameters. 



Updating word vectors

28From Xin Rong 2016



Input vs output word vectors 
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● Input matrix: semantics encoder from word index to semantics
● Output matrix: semantics decoder from semantics to probability 

distributions over words 
● In most cases, input word vectors are used. Some have observed 

that combinations of these two vectors may perform better

Garten, 2014



A force-directed graph
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What decides the strength of the 
string?



Idea behind Word2Vec
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● Feature vector assigned to a word will be adjusted if it can not be used for 
accurate prediction of that word’s context.

● Each word’s context in the corpus is the teacher sending error signals back to 
modify  the feature vector.

● It means that words with similar context will be assigned similar vectors!      

“You shall know a word by the company it keeps”  - by Firth (1957)
 



Input and output words

● How to select them from corpus
● Skip-gram and CBoW differ here 
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Corpus

Vocab 
Builder

Context 
Builder

Vocab

Input and 
Output 
Words 
Pair

Neural Network



Skip-Gram

● Task Definition: given a specific word, predict its nearby word (probability 
output)

● Model input: source word, Model output: nearby word
● Input is one word, output is one word
● The output can be interpreted as prob. scores, which are regarded as how 

likely it is that  each vocabulary word can be nearby your input word. 
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give a talk at the

Input x
talk
talk
talk
talk

Target y
give
a
at
the



CBoW

● Task Definition: given context, predict its target word
● Model input: context (several words), Model output: center word
● Input is several words, output is one word
● Core Trick: average these context vectors for prob. score computing
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give a talk at the
Input x
(give,a,at,the)

Target y
talk



Skip-Gram vs CBoW

● Skip-gram:
○ Learning to predict the context by the center word

● CBoW:
○ Learning to predict the word by the context
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• ？: several times faster to train the ？
• ？: works well with small amount of the training data, represents well even rare words 

or phrases.



Embedding for graph data

● Embeddings can be extended beyond NLP domain
● Embeddings can be learned for any nodes in a graph
● Nodes can be items, web pages and so on in user clicked stream data
● Embeddings can be learned for any group of discrete and co-occurring states.
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3.  Neural Networks for NLP
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Sequence of words

● Each sentence or document can be regarded as a sequence of vectors. 
● The shape of matrix depends on the length of sequence. However, the 

majority of ML  systems need fixed-length feature vectors.
● One simple solution: average the sequence of vectors, just like bag-of-words 

(abandon order information).

38

I  hate  this  movie This  is  my  favorite  movie.

4 by d 5 by d



Complex semantic
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Word 
embeddings

Word Embeddings is the foundation for deep learning’s 
applications on NLP

1 RNN
2 CNN
3 Attention
etc



Neural networks for NLP
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Seq. of Token Embedding Layer Seq. of Embeddings Neural Network

I
got
lost

Labels

word 
embedding 
matrix

3 by V V by d

3 by d

sentence 
embedding 

FC-Layer

Embedding layer: the fully-connected layer via one-hot encoding (no bias and no activation) 



Is Word2Vec good enough?

● Can not capture different senses of words (context independent)
○ Solution: Take the word order into account->context dependent    

● Can not address Out-of-Vocabulary words
○ Solution: Use characters or subwords   
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Multi-sense of Words

• It is safest to deposit your money in the bank.

• All the animals lined up along the river bank.
 

• Today, blood banks collect blood.

The third sense of not?

Vocab 
size

Word2Vec, Fasttext,Glove and other 
word embedding models

The index 
of “bank”



4.  Tokens and Embeddings 
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Tokens and Embeddings

44

● Tokenization
○ LLM deal with text in small chunks called tokens. 

● Embeddings:
○ The numeric representation for tokens



Tokenization
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https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer


Tokenization Approach
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● Word tokens
○ Used in word2vec
○ Unable to deal with new words 
○ Result in a vocabulary that has a lot of tokens with minimal differences  

■ Apology, Apologize, Apologetic, Apologist
● Subword tokens 

○ Contains full and partial words
○ Able to represent new words by breaking down the new token into smaller characters

■ Apolog 
● Suffix tokens: -y, -ize, -etic, -ist 
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Tokenization: word level

Sentence: It is raining.
It is raining .

35 78 156 43

Input tokens

Tokens ID

Relies on a predefined vocabulary -> Out-of-vocabulary issues
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Tokenization: subword level

Sentence: It is raining.
It is rain .

35 78 435 43

Input tokens

Tokens ID

ing

23

● Can represent out-of-vocabulary words by composing them from subword units 
● The subword algorithms have two main modules:

○ A token learner:  this takes a corpus as input and creates a vocabulary containing tokens
■ When should we decompose word into subwords and index those subwords

○ A token segmenter
■ Takes a piece of text and segments it into tokens

Byte-pair Encoding tokenization

https://huggingface.co/learn/nlp-course/en/chapter6/5


Tokenizer Properties
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● Tokenization methods
○ How to choose an appropriate set of tokens to represent a dataset 

● Tokenizer parameters 
○ Vocab size
○ Special tokens
○ Capitalization 

● The domain of the data 
○ Before the model training, the tokenization method optimized the vocabulary to represent a 

specific dataset

https://huggingface.co/docs/transformers/tokenizer_summary


Tokenizer
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● Tokenization: 
○ Split text into tokens (words, subwords, punctuation, etc.) using model-specific rules to match 

the pretrained model. 
● Numerical conversion

○ Convert tokens to number using the model-specific vocabulary (indexes), ensuring alignment 
with the pretrained models

If you do not want to re-train the model, you have to use its associated tokenizers. 

SAME
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Bert Tokenizers
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Next Class: From Word2Vec to Transformers
Suggested Reading: The illustrated transformer 

http://jalammar.github.io/illustrated-transformer/

