
Applied Machine Learning for
Business Analytics
Lecture 2: From BoW to Word2Vec

Lecturer: Zhao Rui

Agenda

1. Representation Learning in NLP
2. Word Embeddings
3. Neural Networks for NLP
4. Tokens and Embeddings

2

1. Representation Learning

3

Representation learning

● We need to develop systems that read and understand text the way a person
does, by forming a representation of the text, and other context information
that humans create to understand a piece of text.

4

Representation learning

● We need to develop systems that read and understand text the way a person
does, by forming a representation of the text, and other context information
that humans create to understand a piece of text.

5

I eat an apple

Text Numerical Representation

The learned representation should capture
high-level semantic and syntactic information.

History of NLP

● Now, neural nlp models are able to achieve state-of-arts results in all tasks.
● Before neural nlp:

○ Symbolic NLP: rule-based system (derived from linguistic)
○ Statistical NLP: data-driven and use statistical methods

6

Symbolic NLP Statistical NLP Neural NLP

1950 - early 1990s 1990s - 2010s Present

?

Future

Statistical NLP

● Starting from Document-Term Matrix
○ It contains the co-occurrence information
○ Bag-of-Words: n-gram as features
○ TF-IDF: frequency of words to measure importance
○ Matrix Decomposition:

■ SVD->Latent Semantic Analysis
■ Probabilistic model-> Topic Model

7

D0: I eat an apple every day
D1: I eat an orange every day
D2: I like driving my car to work

Corpus

Document-Term Matrix

Bag-of-Words Latent Semantic
Analysis

Topic ModelsTF-IDF

Bag-of-Words

8

Building Vocabulary: Tokenization -> Count unique set

Encoding Sentences into Vectors

Source: Hands-On Large Language Models

https://learning.oreilly.com/library/view/hands-on-large-language/9781098150952/

Limitations of BoW Vectors

● Too strong assumption: all words are independent of each other
○ | orange - peach | < | orange - car |

● Can not capture the order information in the sequence

● High dimensionality due to large size of vocabulary

9

A new perspective on BoW

● Each word in vocab is represented in one-hot embedding
● Sum one-hot vectors of the words in a sentence
● The final vector is the representation for the given sentence and then fed into

a classifier.

10

I eat an apple

Composition Function:
Sum

BoW
Features

Classification Models Labels

How to improve?
One-hot

Statistical NLP

● D3: apple car
○ Word vector: one-hot ones

■ Apple: 0 1 0 0 0 0 0 0 0 0 0 0
■ Car: 0 0 1 0 0 0 0 0 0 0 0 0

○ Sum of two word vectors
■ apple vec + car vec

○ Document vector:
■ 0 1 1 0 0 0 0 0 0 0 0 0

11

D0: I eat an apple every day
D1: I eat an orange every day
D2: I like driving my car to work

Corpus

Document-Term Matrix

Neural NLP

12

https://www.kamperh.com/slides/ruder+kamper_indaba2018_talk.pdf

2. Word Embeddings

13

Word representation

● How to represent words in a vector space

14

Distributed representation

● Words should be encoded into a low-dimensional and dense vector

15

Word vectors

16

Project word
vectors in a
two-dimensional
space. And
visualize them!

Similar words
are close to
each other.

Word2Vec

● A method of computing vector representation of words developed by Google.
● Open-source version of Word2Vec hosted by Google (in C)
● Train a simple neural network with a single hidden layer to perform word

prediction tasks.
● Two structures proposed Continuous Bag of Words (CBoW) vs Skip-Gram

17

Word2Vec as BlackBox

18

Corpus Word2Vec Tool Word Embeddings

input, output

Use NN to predict word

19

Input words Neural Network Output words

Self-supervised learning

Eat
banana

apple

cake

hotpot

probabilities

vocab

A Good Visualization for Word2Vec

20

https://ronxin.github.io/wevi/

https://ronxin.github.io/wevi/

Target

● Given a training corpus, we prepare a list of N (input_word, output_word).
● Objective Function: Maximize probability of all the output words given the

corresponding input words.

21

Neural network
parameters that will
be optimized

Model architecture

22From Xin Rong 2016

Vocab size Vocab sizeembedding size
hyperparameters

Input layer

23

Give the training pair: eat -> apple (given eat, predict apple)
● 8 unique words are in the corpus so that the input layer has 8 neurons
● The index of eat is 3 in the vocab
● The input vector of the x(eat) would be:

[0,0,1,0,0,0,0, 0]

Index of eat

One-hot vector

Hidden layer

24

● Linear-activation function here
● 5 neurons are the word vec. dimensions
● This layer is operating as a ‘lookup’ table
● Input word matrix denoted as IVec

8
 in

pu
ts

5 neurons

8
 w

or
ds

5 features

Hidden Layer Weights
Matrix

Word Vector Look Up
Table

[0,0,1,0,0,0,0, 0]

Index of eat

One-hot vector

0.96，1.5， 1.37， 0.34，1.04

Word vector for “eat”

This is a projection/look up process: given the index of the word, we take
the ith row in the word vector matrix out

Output layer

25

● Softmax Classifier
● Output word matrix denoted as OVec

Word vector for “eat”

Output Layer Weights

Output Layer Weights Matrix
A.K.A Output word vectors

5
 n

eu
ro

ns
/fe

at
ur

es

1 by 5

5 by 8

Scores over 8 words

p(word|”eat”)

8 words

Probability
Distribution

Output layer

26

● Softmax Classifier
● Output word matrix denoted as OVec

Output Layer Weights Matrix
A.K.A Output word vectors

5
 n

eu
ro

ns
/fe

at
ur

es

8 words

Word vector for “eat”

Output weights for “apple”

Probability that if you
randomly pick a word
nearby “eat”, that it is
“apple”

p(apple|eat)

e^(IVec[eat]*OVec[apple])

e^(IVec[eat]*OVec[apple]) + e^(IVec[eat]*OVec[juice]) + e^(IVec[eat]*OVec[drink])+...+e^(IVec[eat]*OVec[water])

5 features 5
fe

at
ur

es

Word2Vec

27

0

0

0

0

1

0

0

0

0.1

0.1

0.7

0

0

0.1

0

0.0

Input Hidden (linear) Output (softmax)

apple

drink

eat

juice

milk

orange

rice

water

0.0

0.0

0.0

1

0.0

0.0

0.0

0.0

Target

juice

Then, we can
compute the loss
and call gradient
descent to update
model parameters.

Updating word vectors

28From Xin Rong 2016

Input vs output word vectors

29

● Input matrix: semantics encoder from word index to semantics
● Output matrix: semantics decoder from semantics to probability

distributions over words
● In most cases, input word vectors are used. Some have observed

that combinations of these two vectors may perform better

Garten, 2014

A force-directed graph

30

What decides the strength of the
string?

Idea behind Word2Vec

31

● Feature vector assigned to a word will be adjusted if it can not be used for
accurate prediction of that word’s context.

● Each word’s context in the corpus is the teacher sending error signals back to
modify the feature vector.

● It means that words with similar context will be assigned similar vectors!

“You shall know a word by the company it keeps” - by Firth (1957)

Input and output words

● How to select them from corpus
● Skip-gram and CBoW differ here

32

Corpus

Vocab
Builder

Context
Builder

Vocab

Input and
Output
Words
Pair

Neural Network

Skip-Gram

● Task Definition: given a specific word, predict its nearby word (probability
output)

● Model input: source word, Model output: nearby word
● Input is one word, output is one word
● The output can be interpreted as prob. scores, which are regarded as how

likely it is that each vocabulary word can be nearby your input word.

33

give a talk at the

Input x
talk
talk
talk
talk

Target y
give
a
at
the

CBoW

● Task Definition: given context, predict its target word
● Model input: context (several words), Model output: center word
● Input is several words, output is one word
● Core Trick: average these context vectors for prob. score computing

34

give a talk at the
Input x
(give,a,at,the)

Target y
talk

Skip-Gram vs CBoW

● Skip-gram:
○ Learning to predict the context by the center word

● CBoW:
○ Learning to predict the word by the context

35

• ？: several times faster to train the ？
• ？: works well with small amount of the training data, represents well even rare words

or phrases.

Embedding for graph data

● Embeddings can be extended beyond NLP domain
● Embeddings can be learned for any nodes in a graph
● Nodes can be items, web pages and so on in user clicked stream data
● Embeddings can be learned for any group of discrete and co-occurring states.

36

3. Neural Networks for NLP

37

Sequence of words

● Each sentence or document can be regarded as a sequence of vectors.
● The shape of matrix depends on the length of sequence. However, the

majority of ML systems need fixed-length feature vectors.
● One simple solution: average the sequence of vectors, just like bag-of-words

(abandon order information).

38

I hate this movie This is my favorite movie.

4 by d 5 by d

Complex semantic

39

Word
embeddings

Word Embeddings is the foundation for deep learning’s
applications on NLP

1 RNN
2 CNN
3 Attention
etc

Neural networks for NLP

40

Seq. of Token Embedding Layer Seq. of Embeddings Neural Network

I
got
lost

Labels

word
embedding
matrix

3 by V V by d

3 by d

sentence
embedding

FC-Layer

Embedding layer: the fully-connected layer via one-hot encoding (no bias and no activation)

Is Word2Vec good enough?

● Can not capture different senses of words (context independent)
○ Solution: Take the word order into account->context dependent

● Can not address Out-of-Vocabulary words
○ Solution: Use characters or subwords

41

42

Multi-sense of Words

• It is safest to deposit your money in the bank.

• All the animals lined up along the river bank.

• Today, blood banks collect blood.

The third sense of not?

Vocab
size

Word2Vec, Fasttext,Glove and other
word embedding models

The index
of “bank”

4. Tokens and Embeddings

43

Tokens and Embeddings

44

● Tokenization
○ LLM deal with text in small chunks called tokens.

● Embeddings:
○ The numeric representation for tokens

Tokenization

45

https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer

Tokenization Approach

46

● Word tokens
○ Used in word2vec
○ Unable to deal with new words
○ Result in a vocabulary that has a lot of tokens with minimal differences

■ Apology, Apologize, Apologetic, Apologist
● Subword tokens

○ Contains full and partial words
○ Able to represent new words by breaking down the new token into smaller characters

■ Apolog
● Suffix tokens: -y, -ize, -etic, -ist

47

Tokenization: word level

Sentence: It is raining.
It is raining .

35 78 156 43

Input tokens

Tokens ID

Relies on a predefined vocabulary -> Out-of-vocabulary issues

48

Tokenization: subword level

Sentence: It is raining.
It is rain .

35 78 435 43

Input tokens

Tokens ID

ing

23

● Can represent out-of-vocabulary words by composing them from subword units
● The subword algorithms have two main modules:

○ A token learner: this takes a corpus as input and creates a vocabulary containing tokens
■ When should we decompose word into subwords and index those subwords

○ A token segmenter
■ Takes a piece of text and segments it into tokens

Byte-pair Encoding tokenization

https://huggingface.co/learn/nlp-course/en/chapter6/5

Tokenizer Properties

49

● Tokenization methods
○ How to choose an appropriate set of tokens to represent a dataset

● Tokenizer parameters
○ Vocab size
○ Special tokens
○ Capitalization

● The domain of the data
○ Before the model training, the tokenization method optimized the vocabulary to represent a

specific dataset

https://huggingface.co/docs/transformers/tokenizer_summary

Tokenizer

50

● Tokenization:
○ Split text into tokens (words, subwords, punctuation, etc.) using model-specific rules to match

the pretrained model.
● Numerical conversion

○ Convert tokens to number using the model-specific vocabulary (indexes), ensuring alignment
with the pretrained models

If you do not want to re-train the model, you have to use its associated tokenizers.

SAME

51

Bert Tokenizers

52

Next Class: From Word2Vec to Transformers
Suggested Reading: The illustrated transformer

http://jalammar.github.io/illustrated-transformer/

