Applied Machine Learning for

Business Analytics
Lecture 3: Transformers

Lecturer: Zhao Rui



Logistics

HW schedule has been updated.
o 3->2

HW1 has been released

Fri
01/31
Fri
02/07

Fri
02/14

Fri
02/21

Sun
03/02

Fri
03/07

From Word2Vec to
Transformers

LLM and its Practices I

LLM and its Practices II

LLM and its Practices IIT

Recess Week

Data Preparation

Link

Link

Link

Link

N.A.

Link

Form your team &
Assignment I Out

LangChain Tutorial &
Assignment I Due

N.A.

Build your First RAG
& Assignment II Out

Proposal Due

Assignment II Due



N\ JimFan &
¢y @DrJimFan

Jensen Huang is the new Taylor Swift

0:13/0:22 o) : {3

4:07 AM - Mar 19, 2024 from San Jose, CA - 511.2K Views

- l"calk
18ytorstirdmmmal | FoINY
R



Transforming Al Panel at GTC 2024

Jensen Huang will host a panel with the authors of "Attention Is All You Need", a seminal research paper that introduced the

Transformer neural network architecture (NeurlPS, 2017)

Jensen Huang Ashish Vaswani Noam Shazeer Niki Parmar Jakob Uskoreit
Founder and CEQ Co-Founder & CEO CEO and Co-Founder Co-Founder CEO
NVIDIA Essential Al Character.Al Essential Al Inceptive

Llion Jones Aidan Gomez Lukasz Kaiser lllia Polosukhini
Co-Founder and CTO Co-Founder and CEO Member of Technical Staff Co-Founder
Sakana Al Cohere OpenAl NEAR Protocol ZANVIDIA



Attention Is All You Need

Ashish Vaswani” Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* ' Lukasz Kaiser*
Google Research University of Toronto Google Brain
1llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* *
illia.polosukhin®gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.



Market Summary > NVIDIA Corp

128.86 uso

+128.82 (322,056.25%) 4 all time

Closed: 28 Jan, 7:53 pm GMT-5 ¢ Disclaimer
After hours 127.47 -1.39 (1.08%)

1D 5D ™M 6M YTD 1Y 5Y Max

150 123.54 USD 28 Jun 2024

100
50 4 USD around 2017
0 T T | T T T

2002 2006 2010 2014 2018 2022
Open 121.81 Mkt cap 3.16T 52-wk high 153.13
High 129.00 P/E ratio 50.78 52-wk low 60.70

Low 116.25 Div yield 0.031%



What happened to NVDA this WEEK?

Nvidia (NVDA) stock dropped nearly 17% Monday, leading a sell-off
across chip stocks and the broader market after a new Al model from
China's DeepSeek raised questions about Al investment and the rise of
more cost-efficient artificial intelligence agents.

Nvidia's decline shaved $589 billion off the Al chipmaker's market cap,
the largest single-day loss in stock market history.

Donald Trump: DeepSeek's Al
should be 'wakeup call' to US tech
industry

‘The release of DeepSeek, Al from a Chinese company should be a wakeup call
for our industries that we need to be laser-focused on competing to win’




DeepSeek is still on top of Transformer

PUAAVALILMILG CVLLP WA UMAL W W VAL AL U VA UNLALD ALV

In this paper, we take the first step toward improving language model reasoning capabilities
using pure reinforcement learning (RL). Our goal is to explore the potential of LLMs to develop
reasoning capabilities without any supervised data, focusing on their self-evolution through
a pure RL process. Specifically, we use DeepSeek-V3-Base as the base model and employ
GRPO (Shao et al., 2024) as the RL framework to improve model performance in reasoning.
During training, DeepSeek-R1-Zero naturally emerged with numerous powerful and interesting
reasoning behaviors. After thousands of RL steps, DeepSeek-R1-Zero exhibits super performance
on reasoning benchmarks. For instance, the pass@1 score on AIME 2024 increases from 15.6% to
71.0%, and with majority voting, the score further improves to 86.7%, matching the performance
of OpenAl-01-0912.

2.1 Basic Architecture

The basic architecture of DeepSeek-V3 is still within the Transformer (Vaswani et al., 2017) framework. For efficient infer-
ence and economical training, DeepSeek-V3 also adopts MLA and DeepSeekMoE, which have been thoroughly validated
by DeepSeek-V2. Compared with DeepSeek-V2, an exception is that we additionally introduce an auxiliary-loss-free load
balancing strategy (Wang et al., 20243a) for DeepSeekMoE to mitigate the performance degradation induced by the effort
to ensure load balance. Figure 2 illustrates the basic architecture of DeepSeek-V3, and we will briefly review the details
of MLA and DeepSeekMOoE in this section.

DeepSeekR1:
https://arxiv.org/ab
s/2501.12948

DeepSeekv3:
https://arxiv.org/ht

ml/2412.19437v1



https://arxiv.org/html/2412.19437v1
https://arxiv.org/html/2412.19437v1
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

Agenda

1. Transformers
2. Attention is all you need
a. Self-Attention
b. Positional Embeddings
3. Summary
4. Appendix
a. Masked Self-Attention
b. Encoder-Decoder Attention



1. Transformers



What is Transformer

Transformer is a sequence to sequence model (Encoder and Decoder)

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswaniOgoogle.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* Lukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google. com aidan@cs. toronto.edu lukaszkaiser@google.com

Tllia Polosukhin* *
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention i ispensing with and i
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model i anew s 3! del s f-th BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053clc4a845aa-Paper.pdf

Qutput
Probabilities

| Add & Norm l‘\

Add & Norm

Multi-Head
Attention

Nx

Add & Norm
Nx T
Masked
Multi-Head Multi-Head
Attention Attention
e ) t
" A < | r—,
Positional Positional
E < '9 G' et
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

11


https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

All LLMs so far use transformer architecture

e BERT and GPT are the most representative ones

Bi-directional Encoder
Representations from
Transformers

Generative Pre-trained
Transformers

12



Transformer is solving Seq2Seq

Next word
DECODER ?
(
Feed Forward
ENCODER 4 _
(, I % &
~
Feed Forward Encoder-Decoder Attention
\_
4 — - X
( Self-Attention ) Self-Attention )
2
\ - "/
t t
Input Sequence Sampled word in the output sequence

13



Input text is encoded with tokenizers to sequence o, Pt

of integers
Input tokens are mapped to sequence of vectors

Output vectors can be classified to a sequence of

tokens
Output tokens can then be decoded back to the

text

Output Output tokens: [321, 11, 99, 21, ...]

Add & Norm

Feed
Forward
Add & Norm
Embeddings Add & Norm T
(vector is a Multi-Head
list of Feed Attention
Forward

numbers)

7 ) Nx
| Add & Norm :

Add & Norm | NEEraa

Iti-Head Multi-Head
Atdtion Attention

A1 S A Py
. L v,
Positional Positional
E i '9 E' i
ncoding Encoding
Input Output
Embedding Embedding

Input tokens: [34792, 121, 32, 76, ...] /inuts Outputs

(shifted right)

14



Transformer

Transformer Block

1.  Transformer block: operation unit

| am a student
a. Consists of multiple computations / [ 3 l

. . {; v 4 1 ~\
b. A sequence of embeddings in ( —— J =[ ——on ]
c. A sequence of embeddings out ) )
2.  Encoder: ( e ] [ SECODER ]
& 4
a. Stack 6 transformer blocks ( ENCODER ) ( DECODER )
b. Learn representations for the input L) L)
( ENCODER ) ( DECODER ]
sequence - .
3. Decoder: ( ENCODER ] [ DECODER ]
a. Stack another 6 transformer blocks. ( + ) ( t ]
ENCODER DECODER
b. Generate output sequences \ z s y
conditioned on the learned | i /

representations from encoder. Transformer Block



Transformer block in Encoder

! | |

! I ! ¢
Transformer Block @

4 4
Add & Normalize ) \
‘ 4 [}
‘ ( Feed Forward ) ( Feed Forward )
e e  m )
4] | z
4 4
LayerNorm( |::H:l - ~—-Hﬁ )
| T I I 4 I
A A
Self-Attention )

{ 1 1 | C

| | NS o —
1. Input: A sequence of vectors

2. Output: A sequence of vectors
3.  Key Components:

a.
b.
C.

Self-attention Layer
Positional Embeddings
Residual and Normalization
Layer

Fully-connected Layer

16



Transformer block in Decoder

»( Add & Normalize )
'
'
- : ( Feed Forward ) ( Feed Forward )
: P Add & Normalize
T T T T Encoder : ( T T )
’( Encoder-Decoder Attention

outputs %
| | | | =
Transformer Block C

Self-Attention

)
Add & Normalize )
)

1 1 ! f R

ST $

| |
1. Input: A sequence of vectors

2. Output: A sequence of vectors
3.  Key Components:

a.

b
c.
d

Masked Self-attention Layer

Positional Embeddings
Encoder-Decoder Attention

Residual and Normalization

Layer

Fully-connected Layer 17



Decoding Process

* The decoder is autoregressive
o Begins with a start token
o Before the stop token is generated, repeat
m Take the list of previous outputs with the encoder outputs that contain the
attention information from the input
m Generate the current output

18



Decoding Process

Encoder Outputs: Je Suis etudiant

Until stop symbol is generated

19



Decoding Process

o Linear Classifier with Final softmax for output probabilities

m The output of the classifier would be the size of vocabulary

m After softmax, probability scores between O and 1 will be generated

m Decoding Strategies:
e Greedy search: the index of the highest probability score would be taken to

predict the current word

e Beam search: takes into account the N most likely tokens
e Other advanced sampling: https:/deci.ai/blog/from-top-k-to-beam-search-lim-decoding-strategies/

Which word in our vocabulary
i associated with this index?

Get the index of the cell
with the highest value
(argmax

log_probs  NNIEEEEEEEEEEEEEE &
01234

vocab_size

logits HENEENEENNNNNNNNEN N
012345 vocab_size

0123

Decoder stack output [ ) 2 O


https://deci.ai/blog/from-top-k-to-beam-search-llm-decoding-strategies/

Temperature Sampling

exp(z;)
E?:l exp(z;)

p; = Softmax(z;) =

Pi (T) - Softmax(z,-/T) = E’P_l exp(z-@

Temperature is a scaling function applied to softmax inputs

Controls randomness: Lowering results
in less random completions. As the
temperature approaches zero, the
model will become deterministic and
repetitive

Mode

@ Chat Beta

Model
gpt-4

Temperature

Maximum length

Top P

Frequency penalty

Presence penalty

2048

21



Temperature Sampling

Temperature = 0.5

Temperature = 0.1

Temperature = 2.0

0.8

©
=

<«

02

o
Aunqeqox

0.0

0.35

o
b« ]
)

n
N
S

o n
& a

0.10
0.05
0.00

s o
Aungeqod

Temperature = 1.0

© <
oS Cl
Aupqeqoxd

02

0.0

< m ~ -

o S
Aungeqod

Tokens

Tokens

22



Encoder-Decoder

Output
A
5 N
Transformer L S°ﬂ‘"'ax ]
[ Linear ]
1
[ Encoder ﬂ)eco o \
éncoder \

| LaerNocm l

Embedding ;g::?g

&

Input

Three kinds of attention in transformers:

e Self-attention
o Input sequence <> Input sequence

e Masked self-attention
o  Previous steps in output sequence <> current steps in

output sequence

e Encoder-Decoder attention

o Input sequence <> Output sequence

Source:
https://towardsdatascience.com/transformers-explained-
visually-part-2-how-it-works-step-by-step-b49fa4a64f34

23


https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-works-step-by-step-b49fa4a64f34
https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-works-step-by-step-b49fa4a64f34

2. Attention



Word Embeddings

e Apple intwo sentences:

O  Sentence 1. My favorite fruit is apple
o  Sentence 2: Solution: My favorite brand is apple

apple

One embedding has multiple senses

Word embeddings’ space




Contextualized Word Embeddings

e Telling context in words

O  Sentence 1: My favorite fruit is
o  Sentence 2: Solution: My favorite is apple2

fruit apple
From nearby words, we can guess two

different meanings of this word (i.e.,
food and brand)

brand
Word embeddings’ space O

26



Contextualized Word Embeddings

e Telling context in words

O  Sentence 1. My favorite fruit is
o  Sentence 2: Solution: My favorite is apple2

. @ - o

fruit applel
1.  In sentence 1, move the word

embedding of apple towards the
word “fruit”

2. Insentence 2, move the word
embedding of apple toward the
word “brand”

This is how attention

brand will work
Word embeddings’ space O 27




How to move one word closer to another one

e Average two words
O applel =0.8*apple + 0.2*fruit = 0.8*5,7] + 0.2*0,8]=[4.0, 7.2]
o apple2 =0.9*apple + 0.1*brand = 0.9*5,7] + 0.1*[6,0]=[5.1, 6.3]

Similarity/Attention

Embeddings
% apple; _________________ ’ Attention mechanism is able to learn
[0, 8] opple multiple embeddings for the same

word in multiple sentences

Brand
Word embeddings’ space [6, 0] Q

28



How to derive similarity

e Apple intwo sentences:

o Sentence 1: My favorite fruit is apple
o Sentence 2: My favorite brand is apple
e Why we move apple to fruit in sentence 1? Instead of other words as “my” and
“ign
e I|tis based on the similarity!
e Assume every word has its own base vector (as word2vec), the contextualized

word embedding of apple in the sentence: my favorite fruit is apple

= Attention(apple, my)*base_vec(my) + Attention(apple, favorite)*base_vec(favorite) + Attention(apple, fruit)*base_vec(fruit) + Attention(apple, is)*base_vec(is) + Attention(apple, apple)*base_vec(apple)

/\

Target word Context word

29



How to derive similarity

my
favourite
fruit

is

apple

Via embeddings, the similarity between two irrelevant words would be zero,
while the similarity between the related pair would be high

my

favourite | fruit

0 0
1 0
0 1
0 0
0 0.25

apple

my
favourite
brand

is

apple

my

favourite

brand

0.11

is

apple

30



How to derive similarity

my
favourite
fruit

is

apple

The diagonal entries are all 1

The similarity between any irrelevant words is O (for simplicity)

The similarity between apple and fruit is 0.25 while the one between apple and
brand is 0.11 considering apple is used more often in the same context as fruit

my favourite | fruit is apple my favourite | brand is apple
1 0 0 0 0 my 1 0 0 0 0

0 1 0 0 0 favourite | 0 1 0 0 0

0 0 1 0 0.25 brand 0 0 1 0 0.11
0 0 0 1 0 is 0 0 0 1 0

0 0 0.25 0 1 apple 0 0 0.11 0 1

31



How to derive similarity

my
favourite
fruit

is

apple

Contextualized Target Word = The sum of a product between the similarity
between target word and context word *

We should also normalize the similarity along the sentence (softmax)

Therefore

o my (in the sentence 1) =
o apple (inthe sentence 1)=0.2 *
o apple (in the sentence 2)="7

my favourite | fruit is

1 0 0 0

0 1 0 0

0 0 0.8 0

0 0 0 1

0 0 0.2 0

apple

0

0

0.2

08

+0.8"

Normalized

my
favourite
brand

is

apple

my

favourite

brand

0.9

0.1

is

apple

09

0.1

32



Contextualized Word Embeddings

* Transformers is proposed to learn better feature for NLP data
- The core layer is self-attention layer which can map a sequence of word embeddings to
another sequence of word embeddings which is contextualized

Encoded Embeddings

— = -

1

A

Contextualized Word Embedding
t t t

f

@@@ mMmoney in the

Different Contexts,
Different Encoded Embeddings for bank.

bank

I I I I
Contextualized Word Embedding

t t 1 t
| ! |

@@@ along the river bank

s el el

Contextualized Word Embedding
t t t t

I I
@@@ blood bank collects blood 33



What is BERT

Bidirectional Encoder Representations from Transformers (BERT)

BERT: Encoder of Transformer,

L Ll

BERT
along the river bank

:/Z

Given a sequence of words, generate a
sequence of vectors and then can be used

for various NLP tasks

Output
Probabilities

R
Feed
Forward
t J
(_H | Add & Norm H
g = ) N Transformer
Feed Attention
Forward ) Nx
Nix | l Add & Norm :
~{ Add & Norm ] Masked
Multi-Head Multi-Head
Attention Attention
=g A=)
\_ J . _/)
Positional ® Q Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs

(shifted right) Solve SquSeq Taéﬁ



Contextualized Word Embeddings

| | | |
Encoded Embeddings Contextualized Word Embedding

| | i @@@ along the river bank

Contextualized Word Embedding

NP S —
— = sl i

Contextualized Word Embedding

I I I I
Different Contexts,
Different Encoded Embeddings for bank. @@@ blood bank  collects blood 35




Embeddings generated from BERT

An apple is sweet in taste.

We can make juice and jam from apple.

An apple a day keeps the doctor away. 1 0

Investors in Apple have a love-hate relationship with the iPhone. -
Both Apple and Huawei have wireless charging features. 4

Steve Jobs returned to Apple in 1196. 1

1

m 1

Cos-similarities among vectors of “apple”
in different context

I-lO

-038
-06
-04

0.2

'- 0.0

36



How does BERT compute

dim:

768
- 1 4 4 1 | J ] |

Bert

- - —

101

|

|
BertTokenizer .

I [CLS]
|

4274 9861 2003 1037 2828 1997 16941 26775 14428 9861

ﬁ 3. Replace tokens with their indexes in vocab

internet fraud is a type of cyber #tcr ##ime fraud

102

[SEP]

1. Break words into tokens
ﬁ 2.Add [CLS] and [SEP] tokens

37


https://en.wikipedia.org/wiki/Cybercrime
https://en.wikipedia.org/wiki/Fraud

In the case of ChatGPT the generated numbers are probabilities. ChatGPT has a limited
vocabulary, and the probabilities indicate how likely each vocabulary word is based on
the input word sequence. ChatGPT has a limited reading range, and the input sequence
has a maximum length of about words, broken into 4000 sub-word tokens. Once
ChatGPT generates a word, it adds that word to the input sequence, and generates a
new word. This process continues until it produces a special word called a “stop” token,
or it hits a preset word limit.

Why is the reading range limited?

38



2.1 Self-Attention



Basic Self-Attention

e A sequence-to-sequence operation taking a sequence of vectors in and
generate a sequence of vectors out
o [x1,x2,x3]->[z1, z2, 23]
o

Relating different positions of the input sequence in order to compute the
representation

=‘: Zi = Zj &ijiﬁj
aij = (') (27)

i 1 i ) =

40



Basic Self-Attention

Sentence i: My favourite fruit is apple New Word Index
my 1 0 0 0 0 favourite_i
fe 0 1 0 0 0 . .
fruit_i
fr 0 0 1 0 0.25
is_i
0 0 0 1 0
apple 0 0 025 0 1 a pp I e_l

Attention Step

my

favourite
0.8*fruit+0.2*apple
is

0.2*fruit+0.8*apple

41



Basic Self-Attention

e There are no model parameters. It is totally determined by the embedding

layer
o  Solution: introduce model parameters -> using three sets of embeddings to get contextualized
embeddings

e Self attention is permutation equivariant. It ignores the order information.
o  Solution: add positional embeddings

42



Self-Attention layer

Step 1. Generate query, key, and value vector for the input vector at each time step.

IEH  Query (to match others):  g=Wx

. i\ 7k i
Key (to be matched): K=W*X Model parameters are introduced here.

Value (representation):  vi=W'x
LLELLELL
= e o

Word embeddings

In practice, bias vectors may be added to
the product of matrix multiplication

43



264

+50

The key/value/query formulation of attention is from the paper Attention Is All You Need.

How should one understand the queries, keys, and values

The key/value/query concept is analogous to retrieval systems. For example, when you search
for videos on Youtube, the search engine will map your query (text in the search bar) against a
set of keys (video title, description, etc.) associated with candidate videos in their database,
then present you the best matched videos (values).

The attention operation can be thought of as a retrieval process as well.

As mentioned in the paper you referenced (Neural Machine Translation by Jointly Learning to
Align and Translate), attention by definition is just a weighted average of values,

Cc = Zajhj
J

where Y a; = 1.

44



Self-Attention layer

Step 2: Compute attention scores using query vectors and key vectors

To encode the i-th word in the sequence, we need to compute the attention scores between this i-th word
and all the words in the sequence.

1. Pick the query vector from the i-th word: qi
2. Attention score computation between ' and all key vectors of the nearby words (including the target
word itself) qi LI

a; . =
2,7 \/@‘\

Dim of key vectors

Word vectors

45



Self-Attention layer

Step 3: Fed unscaled attention scores into softmax layers a1; = N ol
j

A

A A
aii ai2 ais
811 a12 a13

L ol

Word vectors

[

A



Self-Attention layer

Step 4: Take the sum of all the value vectors weighted by the attention scores.

Encoded vector for 1 _ A
the first element = Zz a;v

Word vectors

47



Self-Attention layer

Step 5: All elements in input sequence x'will be encoded into new vectors z'

Encoded vector for 2 A
the second element = Zz a2; v

Word vectors

48



Matrix formulation

Zz' can be computed parallelly based on the whole
input sequence.

Q=WiXx
K=WtX
V=w'X

Matrix
Multiplication

49



Multi-head Self-Attention

e Model parameters: WX, W9, W' specific one kind of attention
e We can have multiple set of WX, W9, WV

1 1

Z pa
z2 Bze
22z

Concatenating all heads

®

o

m m m -




lllustration of Self-Attention

e Multi-head means separate WX, W9, WY matrices
o Expands the model’s ability to focus on different positions
o Gives the attention layer multiple “representation subspaces”
o For example, two-head self-attention

Layer: 5 3| Attention:| Input - Input :

&
The_ The_
animal_ animal_
didn_ didn_
L 2 e e s
S cross. Head here is similar to

the_ the_ 1. the filter in convolutional layer

street_ e 2. the neuron in fully-connected layer
because_ because_
it_ s it
was_ was_
. . too_ too_
High attention from another tire tire

head d_ d_ 51



Multi-head Self-Attention

e I[fthe layer has k heads, the output would be k sets of embeddings
e We need to reduce the dimensionality by concatenating and projection into the low
dimensional
o For example, as below: 4->32->4

d | m_4 1) Concatenate all the attention heads d | m_32 2) Multiply with a weight

matrix that was trained

[ ‘ [ jointly with the model

X

Calculating attention separately in
eight different attention heads

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

3) The result would be the = matrix that captures information
from all the attention heads. We can send this forward to the FFNN

O H .

dim-4

52



Self-attention layer

That's pretty much all there is to multi-headed self-attention. It's quite a handful of matrices, | realize. Let me try to put

them all in one visual so we can look at them in one place

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention
input sentence* each word* We multiply X or using the resulting
with weight matrices Q/K/V matrices

W@
hinki X = WK QO
WoV === Ko
o o ————— VO
= n £ 15
W;@

* In all encoders other than #0, I WK Q1
we don’t need embedding. ! W,V H- e, K4
We start directly with the output ] Vi
of the encoder right below this one

5) Concatenate the resulting = matrices,
then multiply with weight matrix to
produce the output of the layer

53



MultiHeadAttention in Keras

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import MultiHeadAttention

target = tf.keras.Input(shape=[6, 16])

# assume it is a sentence of 6 words. Then, each word has a

layer = MultiHeadAttention(num_heads=1, key_dim=2)

output_tensor, attention_scores = layer(target, target, return_attention_scores=True)
print(output_tensor.shape)

print(attention_scores.shape)

(None, 6, 16)
(None, 1, 6, 6)

for matrix in layer.weights:
print(matrix.shape)

(16, 1, 2)
(1, 2)
(16, 1, 2)
(1, 2)
(16, 1, 2)
(1, 2)
(1, 2, 16)
(16,)

54



MultiHeadAttention in Keras

layer = MultiHeadAttention(num_heads=3, key_dim=2)

target = tf.keras.Input(shape=[6,
output_tensor, attention_scores =
print(output_tensor.shape)
print(attention_scores.shape)

(None, 6, 16)
(None, 3, 6, 6)

for matrix in layer.weights:
print(matrix.shape)

(16, 3, 2)
(3, 2)
(16, 3, 2)
(3, 2)
(16, 3, 2)
(3, 2)

(3, 2, 16)
(16,)

16])
layer(target, target, return_attention_scores=True)

55



MultiHeadAttention in Keras

If we change the key_dim from 2 to 5?

layer = MultiHeadAttention(num_heads=3, key_dim=2)

target = tf.keras.Input(shape=[6, 16])

output_tensor, attention_scores = layer(target, target, return_attention_scores=True)
print(output_tensor.shape)

print(attention_scores.shape)

(None, 6, 16)
(None, 3, 6, 6)

for matrix in layer.weights:
print(matrix.shape)

(16, 3, 2)
(3, 2)
(16, 3, 2)
(3, 2)
(16, 3, 2)
(3, 2)

(3, 2, 16)
(16,)

https://github.com/rz0718/BT5153 2024
/blob/main/codes/lab_lecture08/Attention Layer in_Keras.ipynb

56


https://github.com/rz0718/BT5153_2023/blob/main/codes/lab_lecture08/Attention_Layer_in_Keras.ipynb
https://github.com/rz0718/BT5153_2023/blob/main/codes/lab_lecture08/Attention_Layer_in_Keras.ipynb

2.2 Position Embedding



Positional embeddings

e No position information in self-attention

e Positional Embeddings: each position has a unique positional vector PE(pos)
o Add this vector to each input embeddings
o Expands the model’s ability to focus on different positions.

Dim.
@)
3
Max. Length
of Input

Vocab

Transformer Block #1 !
Slize

Sequence

Transfo“rmer Bloq‘k #0

ﬁ I

Input Embedding Matrix (Learned from the data)
58

Positional Embedding Matrix (Pre-defined and Fixed)



Positional embeddings

e The equation in the original paper:

PE(pos 2i) = sin(pos/100002i/dmodcn) 0
PE(pos,2i+1) = COS(pos/lO()()O?i/dmodcn) 2

Core idea: using fixed weights which encode .
information related to a specific position of a token
in @ sentence

30 40 50 60

Embedding Dimension

More details; https://kazemnejad.com/blog/transformer architecture positional encoding/

100

075

050

025

0.00

-0.25

-0.50

-0.75


https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

3. Summary



A “functional” viewpoint on Transformer

Qutput e e e - — -

. 1
Probabilitics . .
e ‘ ! Loss function (predict next token |
| given previous context) I
I o !
t

Sequence to Sequence mapping with multiple matrix
multiplication

Input: [batch, d_embedding, length]
Output: [batch, d_embedding, length]

Positional Positional
Encoding Y Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

Function
parameters are
updated via
backpropagation.

61



Transformers is replacing RNN and CNN

Transformer: A Novel Neural Network Architecture for
e Compared to Transformers, RNN
o can not be trained in parallel Source:
o suffers from long dependency issues e o escaich ool A0 0o
e Compared to Transformers, CNN
o is unable to capture all possible combinations of words (filter size is predefined)
e Compared to the previous NN, Transformers

o Non sequential: the input sequence are processed as a whole

o Self Attention: contextualized word embeddings

(@)

Positional embeddings: a better way than recurrence to capture order information
[ J

Podcast about transformers

o https://www.youtube.com/watch?v=9uw3F6rndnA

62


https://www.youtube.com/watch?v=9uw3F6rndnA
https://blog.research.google/2017/08/transformer-novel-neural-network.html
https://blog.research.google/2017/08/transformer-novel-neural-network.html

Must Read !!

The illustrated transformer (the source of the awesome visualizations)



http://jalammar.github.io/illustrated-transformer/

Implementations of Transformers

e Build Transformer from Scratch
e We can import it from huggingface



https://nlp.seas.harvard.edu/2018/04/03/attention.html

Next Class: LLM |

65



Appendix



Masked Self-Attention



Masked Self-Attention

e This is the attention layer used to compute the dependency among the target words
e Since the sequence is generated word by word, we need to prevent it from conditioning
to the future tokens
e Forexample:
o to generate “a”, we should not have access to “student”

Target Self Attention Score Look-ahead Bias Masked Self Attention Score
I am | a stud ! am | a stutd I am | a stutd
ent en en
| 07 | 04% 04% 01% | 0 dnf | dinf | -inf | 0.7 | -nf | -nf | -inf
am | 01 | 06 | 02% 01% .I. am | 0 |0 | -nf | -inf — am | 01 |06 | dnf | -nf
a |01 (03 |06 |01% a |0 0 10 |- a |01 |03 06 | -nf
stud | 01 |03 |03 | 03 stud | 0|0 [0 |0 stud | 04 | 03 |03 |03

ent



Masked Self-Attention

e Add look-ahead mask matrix
e Apply softmax to get the probabilistic scores
o The negative infinities would become zero after softmax
o For example, the attention score for “a”
m has values for itself and all words before it
m Zero for the word “student”

Masked Self Attention Score Normalized Masked Self-Attention Scores
| am a student | am a student
07 i i inf softmax ! ! 0 0 0
am 0.37 0.62 0 0
am 0.1 06 -inf -inf
a 0.1 0.3 0.6 -inf a 0.26 0.3 043 0
student 0.1 0.3 0.3 0.3

student | 0.21 0.26 0.26 0.26



Encoder-decoder Attention



Encoder-decoder attention

Attention in decoder layer:

1. Attention vectors: a vector of importance weights (measure the interaction between each
target word with each input word)

Output I am a student
— High Attention
Low Attention
je suis  étudiant
2. The target is approximated by the sum of their weighted by the attention
scores.
Vec =0.15* + 0.05% + 0.8"

student
71



Encoder-Decoder attention layer

Different from Self attention layer

1. Generate query vector for the generated output sequence (from itself: Decoder)
and value vector for the input sequence at each time step (from Encoder)

2. Generate

Self Attention Score n

je
suis

eludient

je

suis

eludient

Encoder-decoder Attention Score

| am a student

je
suis
eludient

72



Matrix formulation

Encoder-
Output
Value &
Key

- -

Encoder-decoder
Attention L?yer

| | Query

= Z = softmaz( QK )14

= X

Vo
i
Q=WiIX
K=WkX

V=Ww'X

73



