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● HW schedule has been updated.
○ 3 -> 2

● HW1 has been released

Logistics
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4 USD around 2017
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What happened to NVDA this WEEK?
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DeepSeek is still on top of Transformer

DeepSeekv3: 
https://arxiv.org/ht
ml/2412.19437v1

DeepSeekR1: 
https://arxiv.org/ab
s/2501.12948

https://arxiv.org/html/2412.19437v1
https://arxiv.org/html/2412.19437v1
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948


Agenda

1. Transformers
2. Attention is all you need

a. Self-Attention
b. Positional Embeddings

3. Summary
4. Appendix 

a. Masked Self-Attention
b. Encoder-Decoder Attention 
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1. Transformers
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11https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

What is Transformer

Transformer is a sequence to sequence model (Encoder and Decoder)

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
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All LLMs so far use transformer architecture 

● BERT and GPT are the most representative ones

Generative Pre-trained 
Transformers

Bi-directional Encoder 
Representations from 
Transformers
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Transformer is solving Seq2Seq

Input Sequence Sampled word in the output sequence

Next word
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• Input text is encoded with tokenizers to sequence 
of integers 

• Input tokens are mapped to sequence of vectors 
• Output vectors can be classified to a sequence of 

tokens
• Output tokens can then be decoded back to the 

text
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Transformer
1. Transformer block:  operation unit

a. Consists of multiple computations
b. A sequence of embeddings in 
c. A sequence of embeddings out

2. Encoder: 
a. Stack 6 transformer blocks
b. Learn representations for the input 

sequence
3. Decoder:

a. Stack another 6 transformer blocks.
b. Generate output sequences 

conditioned on the learned 
representations from encoder.

Transformer Block 

Transformer Block 
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Transformer block in Encoder 

1. Input: A sequence of vectors
2. Output: A sequence of vectors 
3. Key Components:

a. Self-attention Layer
b. Positional Embeddings
c. Residual and Normalization 

Layer
d. Fully-connected Layer

x1

Transformer Block

z1

x2

z2

x3

z3

x4

z4
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Transformer block in Decoder

1. Input: A sequence of vectors
2. Output: A sequence of vectors 
3. Key Components:

a. Masked Self-attention Layer
b. Positional Embeddings
c. Encoder-Decoder Attention
d. Residual and Normalization 

Layer
e. Fully-connected Layer

x1

Transformer Block

z1

x2

z2

x3

z3

x4

z4
Encoder 
outputs 
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Decoding Process

• The decoder is autoregressive
○ Begins with a start token
○ Before the stop token is generated, repeat

■ Take the list of previous outputs with the encoder outputs that contain the 
attention information from the input

■ Generate the current output
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Start

Transformer Block

z1

Encoder Outputs: Je Suis etudiant

Start

Transformer Block

z1

I

z2

I

am

Decoding Process 
Until stop symbol is generated
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Decoding Process

○ Linear Classifier with Final softmax for output probabilities 
■ The output of the classifier would be the size of vocabulary
■ After softmax, probability scores between 0 and 1 will be generated
■ Decoding Strategies:

● Greedy search: the index of the highest probability score would be taken to 
predict the current word

● Beam search: takes into account the N most likely tokens
● Other advanced sampling: https://deci.ai/blog/from-top-k-to-beam-search-llm-decoding-strategies/

https://deci.ai/blog/from-top-k-to-beam-search-llm-decoding-strategies/
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Temperature Sampling
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Temperature Sampling
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Encoder-Decoder

Source: 
https://towardsdatascience.com/transformers-explained-
visually-part-2-how-it-works-step-by-step-b49fa4a64f34

Three kinds of attention in transformers: 
● Self-attention

○ Input sequence <> Input sequence 
● Masked self-attention

○ Previous steps in output sequence <> current steps in 
output sequence

● Encoder-Decoder attention
○ Input sequence <> Output sequence

https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-works-step-by-step-b49fa4a64f34
https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-works-step-by-step-b49fa4a64f34


2. Attention
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Word Embeddings 
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● Apple in two sentences:
○ Sentence 1: My favorite fruit is apple
○ Sentence 2: Solution: My favorite brand is apple

apple

Word embeddings’ space

One embedding has multiple senses



Contextualized Word Embeddings 
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● Telling context in words 
○ Sentence 1: My favorite fruit is apple1  
○ Sentence 2: Solution: My favorite brand is apple2

fruit apple

brand
Word embeddings’ space

From nearby words, we can guess two 
different meanings of this word (i.e., 
food and brand)



Contextualized Word Embeddings 
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● Telling context in words 
○ Sentence 1: My favorite fruit is apple1
○ Sentence 2: Solution: My favorite brand is apple2

fruit
apple

brand
Word embeddings’ space

apple1

apple2

1. In sentence 1, move the word 
embedding of apple towards the 
word “fruit”

2. In sentence 2, move the word 
embedding of apple toward the 
word “brand” 

This is how attention 
will work 



How to move one word closer to another one
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● Average two words 
○ apple1  = 0.8*apple + 0.2*fruit   = 0.8*[5,7] + 0.2*[0,8]= [4.0, 7.2]
○ apple2 = 0.9*apple + 0.1*brand  = 0.9*[5,7] + 0.1*[6,0]= [5.1, 6.3]

Embeddings

Similarity/Attention

fruit
[0, 8] apple

Brand
[6, 0]Word embeddings’ space

apple1

apple2

 
[5, 7]

Attention mechanism is able to learn 
multiple embeddings for the same 
word in multiple sentences



How to derive similarity
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● Apple in two sentences:
○ Sentence 1: My favorite fruit is apple
○ Sentence 2: My favorite brand is apple

● Why we move apple to fruit in sentence 1? Instead of other words as “my” and 
“is”

●  It is based on the similarity!
● Assume every word has its own base vector (as word2vec), the contextualized 

word embedding of apple in the sentence: my favorite fruit is apple

= Attention(apple, my)*base_vec(my) +  Attention(apple, favorite)*base_vec(favorite) + Attention(apple, fruit)*base_vec(fruit) + Attention(apple, is)*base_vec(is) + Attention(apple, apple)*base_vec(apple)

Target word Context word



How to derive similarity
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● Via embeddings, the similarity between two irrelevant words would be zero, 
while the similarity between the related pair would be high

my favourite fruit is apple

my 1 0 0 0 0

favourite 0 1 0 0 0

fruit 0 0 1 0 0.25

is 0 0 0 1 0

apple 0 0 0.25 0 1

my favourite brand is apple

my 1 0 0 0 0

favourite 0 1 0 0 0

brand 0 0 1 0 0.11

is 0 0 0 1 0

apple 0 0 0.11 0 1



How to derive similarity

31

● The diagonal entries are all 1
● The similarity between any irrelevant words is 0 (for simplicity)
● The similarity between apple and fruit is 0.25 while the one between apple and 

brand is 0.11 considering apple is used more often in the same context as fruit

my favourite fruit is apple

my 1 0 0 0 0

favourite 0 1 0 0 0

fruit 0 0 1 0 0.25

is 0 0 0 1 0

apple 0 0 0.25 0 1

my favourite brand is apple

my 1 0 0 0 0

favourite 0 1 0 0 0

brand 0 0 1 0 0.11

is 0 0 0 1 0

apple 0 0 0.11 0 1



How to derive similarity
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● Contextualized Target Word = The sum of a product between the similarity 
between target word and context word * context word embeddings

● We should also normalize the similarity along the sentence (softmax)
● Therefore

○ my (in the sentence 1) = my
○ apple (in the sentence 1) = 0.2 * fruit + 0.8 * apple
○ apple (in the sentence 2) = ?

my favourite fruit is apple

my 1 0 0 0 0

favourite 0 1 0 0 0

fruit 0 0 0.8 0 0.2

is 0 0 0 1 0

apple 0 0 0.2 0 0.8

my favourite brand is apple

my 1 0 0 0 0

favourite 0 1 0 0 0

brand 0 0 0.9 0 0.9

is 0 0 0 1 0

apple 0 0 0.1 0 0.1

Normalized
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Contextualized Word Embeddings

• Transformers is proposed to learn better feature for NLP data
• The core layer is self-attention layer which can map a sequence of word embeddings to 

another sequence of word embeddings which is contextualized

money

Contextualized Word Embedding

in the bank

Contextualized Word Embedding

the river bank

blood

Contextualized Word Embedding

bank collects blood

along

Encoded Embeddings

Different Contexts, 
Different Encoded Embeddings for bank. 



What is BERT
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• Bidirectional Encoder Representations from Transformers (BERT)
• BERT: Encoder of Transformer, 

BERT

the river bankalong

Transformer

Solve Seq2Seq Task

Given a sequence of words, generate a 
sequence of vectors and then can be used 
for various NLP tasks



Contextualized Word Embeddings
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money

Contextualized Word Embedding

in the bank

Contextualized Word Embedding

the river bank

blood

Contextualized Word Embedding

bank collects blood

along

Encoded Embeddings

Different Contexts, 
Different Encoded Embeddings for bank. 



Embeddings generated from BERT
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Cos-similarities among vectors of “apple” 
in different context



How does BERT compute

37
“Internet fraud is a type of cybercrime fraud” 

[CLS] internet fraud is a type of cyber ##cr ##ime fraud [SEP]

101 4274 9861 2003 1037 2828 1997 16941 26775 14428 9861 102

dim:
768 

1. Break words into tokens
2.Add [CLS] and [SEP] tokens

3. Replace tokens with their indexes in vocab
BertTokenizer

Bert

https://en.wikipedia.org/wiki/Cybercrime
https://en.wikipedia.org/wiki/Fraud
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Why is the reading range limited?



2.1 Self-Attention
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Basic Self-Attention
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● A sequence-to-sequence operation taking a sequence of vectors in and 
generate a sequence of vectors out

○ [x1, x2, x3] -> [z1, z2, z3]
● Relating different positions of the input sequence in order to compute the 

representation

x1

x1

x2

x2

x2

x2

x3

x3

x2

z2z1 z3



Basic Self-Attention
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my favourite fruit is apple

my 1 0 0 0 0

favourite 0 1 0 0 0

fruit 0 0 1 0 0.25

is 0 0 0 1 0

apple 0 0 0.25 0 1

Sentence i: My favourite fruit is apple New Word Index

my_i   

favourite_i

fruit_i

is_i

apple_i

Attention Step

my

favourite

0.8*fruit+0.2*apple

is

0.2*fruit+0.8*apple



Basic Self-Attention
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● There are no model parameters. It is totally determined by the embedding 
layer

○ Solution: introduce model parameters -> using three sets of embeddings to get contextualized 
embeddings

● Self attention is permutation equivariant. It ignores the order information.
○ Solution: add positional embeddings



Self-Attention layer
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Step 1: Generate query, key, and value vector for the input vector at each time step. 

attention 

x1

k1q1 v1

x2

k2q2 v2

x3

k3q3 v3

q

k

v

Query (to match others):    qi=Wqxi

attention 

Key (to be matched):          ki=Wkxi

attention 

Value (representation):       vi=Wvxi

attention 

Word embeddings

Model parameters are introduced here.

In practice, bias vectors may be added to 
the product of matrix multiplication
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Self-Attention layer
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Step 2: Compute attention scores using query vectors and key vectors

x1

k1q1 v1

x2

k2q2 v2

x3

k3q3 v3

Word vectors

a11 a12 a13

To encode the i-th word in the sequence, we need to compute the attention scores between this i-th word 
and all the words in the sequence.

1. Pick the query vector from the i-th word: qi

2. Attention score computation between qi and all key vectors of the nearby words (including the target 
word itself)

Dim of key vectors



Self-Attention layer
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Step 3: Fed unscaled attention scores into softmax layers

x1

k1q1 v1

x2

k2q2 v2

x3

k3q3 v3

Word vectors

a11 a12 a13

Softmax: normalized to prob. scores 



Self-Attention layer
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Step 4: Take the sum of all the value vectors weighted by the attention scores. 

x1

k1q1 v1

x2

k2q2 v2

x3

k3q3 v3

Word vectors

z1

Encoded vector for 
the first element



Self-Attention layer
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Step 5: All elements in input sequence xi will be encoded into new vectors zi

x1

k1q1 v1

x2

k2q2 v2

x3

k3q3 v3

Word vectors

z2

Encoded vector for 
the second element



Matrix formulation
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x1

Self-Attention Layer

z1

x2

z2

x3

z3

x4

z4

zi can be computed parallelly based on the whole 
input sequence.

q1 q2 q3 q4

k1 k2 k3 k4

v1 v2 v3 v4

Matrix 
Multiplication



Multi-head Self-Attention
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● Model parameters: Wk, Wq, Wv specific one kind of attention
● We can have multiple set of Wk, Wq, Wv

z1

z1

z1

x1

k1q1 v1

x3

k3q3 v3

x1

k1q1 v1

x3

k3q3 v3

Self-attention head 0 Self-attention head 1

z1 z3 z1 z3

z1

z3
z2

z1

z3
z2

Concatenating all heads 
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High attention from one 
head 

High attention from another 
head

Head here is similar to 
1. the filter in convolutional layer
2. the neuron in fully-connected layer

Illustration of Self-Attention
● Multi-head means separate Wk, Wq, Wv matrices

○ Expands the model’s ability to focus on different positions
○ Gives the attention layer multiple “representation subspaces”
○ For example, two-head self-attention



Multi-head Self-Attention
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● If the layer has k heads, the output would be k sets of embeddings 
● We need to reduce the dimensionality by concatenating and projection into the low 

dimensional
○ For example, as below: 4->32->4

dim-4 dim-32
dim-4



Self-attention layer

53



MultiHeadAttention in Keras
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MultiHeadAttention in Keras
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MultiHeadAttention in Keras
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If we change the key_dim from 2 to 5? 

https://github.com/rz0718/BT5153_2024
/blob/main/codes/lab_lecture08/Attention_Layer_in_Keras.ipynb

https://github.com/rz0718/BT5153_2023/blob/main/codes/lab_lecture08/Attention_Layer_in_Keras.ipynb
https://github.com/rz0718/BT5153_2023/blob/main/codes/lab_lecture08/Attention_Layer_in_Keras.ipynb


2.2 Position Embedding
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Positional embeddings
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● No position information in self-attention
● Positional Embeddings: each position has a unique positional vector PE(pos)

○ Add this vector to each input embeddings
○ Expands the model’s ability to focus on different positions.

x1

Transformer Block #0

x2 x3 x4

Transformer Block #1

PE1 PE2 PE3 PE4

x1 x2 x3 x4 Input Embedding Matrix (Learned from the data)

Positional Embedding Matrix (Pre-defined and Fixed)

Vocab 
size

Dim.

Max. Length 
of Input 
Sequence

Dim.



Positional embeddings
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● The equation in the original paper:

More details: https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Core idea: using fixed weights which encode 
information related to a specific position of a token 
in a sentence

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/


3.  Summary
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A “functional” viewpoint on Transformer
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Sequence to Sequence mapping with multiple matrix 
multiplication

Input:           [batch, d_embedding, length]
Output:        [batch, d_embedding, length]

Loss function (predict next token 
given previous context)

Function 
parameters  are 
updated via 
backpropagation. 



● Compared to Transformers, RNN
○ can not be trained in parallel
○ suffers from long dependency issues

● Compared to Transformers, CNN
○ is unable to capture all possible combinations of words (filter size is predefined)

● Compared to the previous NN, Transformers 
○ Non sequential: the input sequence are processed as a whole
○ Self Attention: contextualized word embeddings
○ Positional embeddings: a better way than recurrence to capture order information

● Podcast about transformers
○ https://www.youtube.com/watch?v=9uw3F6rndnA

Transformers is replacing RNN and CNN

62

Source: 
https://blog.research.google/2017/08/tra
nsformer-novel-neural-network.html

https://www.youtube.com/watch?v=9uw3F6rndnA
https://blog.research.google/2017/08/transformer-novel-neural-network.html
https://blog.research.google/2017/08/transformer-novel-neural-network.html


The illustrated transformer (the source of the awesome visualizations)

Must Read !! 

http://jalammar.github.io/illustrated-transformer/


● Build Transformer from Scratch 
● We can import it from huggingface

Implementations of Transformers

https://nlp.seas.harvard.edu/2018/04/03/attention.html
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Next Class: LLM I 



Appendix
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Masked Self-Attention
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Masked Self-Attention
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● This is the attention layer used to compute the dependency among the target words
● Since the sequence is generated word by word, we need to prevent it from conditioning 

to the future tokens
● For example: 

○ to generate “a”, we should not have access to “student” 

attention 
I am a stud

ent

I 0.7 0.1 0.1 0.1

am 0.1 0.6 0.2 0.1

a 0.1 0.3 0.6 0.1

stud
ent

0.1 0.3 0.3 0.3

Target Self Attention Score Look-ahead Bias 

I am a stud
ent

I 0 -inf -inf -inf

am 0 0 -inf -inf

a 0 0 0 -inf

stud
ent

0 0 0 0

I am a stud
ent

I 0.7 -inf -inf -inf

am 0.1 0.6 -inf -inf

a 0.1 0.3 0.6 -inf

stud
ent

0.1 0.3 0.3 0.3

Masked Self Attention Score



Masked Self-Attention
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● Add look-ahead mask matrix
● Apply softmax to get the probabilistic scores

○ The negative infinities would become zero after softmax
○ For example, the attention score for “a” 

■ has values for itself and all words before it
■ Zero for the word “student”

attention 
I am a student

I 0.7 -inf -inf -inf

am 0.1 0.6 -inf -inf

a 0.1 0.3 0.6 -inf

student 0.1 0.3 0.3 0.3

Masked Self Attention Score

I am a student

I 1 0 0 0

am 0.37 0.62 0 0

a 0.26 0.3 0.43 0

student 0.21 0.26 0.26 0.26

Normalized Masked Self-Attention Scores

softmax



Encoder-decoder Attention
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Encoder-decoder attention
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Attention in decoder layer:

1. Attention vectors: a vector of importance weights (measure the interaction between each 
target word with each input word)

2. The target is approximated by the sum of their input values weighted by the attention 
scores.

attention 

I 

je

 
Input

Output

suis

 
étudiant

 

High Attention
Low Attention

Vecstudent=0.15*Vecje  + 0.05*Vecsuis + 0.8*Vecetudiant 

am a student



Encoder-Decoder attention layer
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Different from Self attention layer
1. Generate query vector for the generated output sequence (from itself: Decoder)
2. Generate key and value vector for the input sequence at each time step (from Encoder)

attention 

je suis eludient

je

suis

eludient

I am a student

je

suis

eludient

Self Attention Score n Encoder-decoder Attention Score 



Matrix formulation
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y1

Encoder-decoder 
Attention Layer

z2

y2

h2

q1 q2

k1 k2 k3 k4

v1 v2 v3 v4

Encoder-
Output

z1 z3

h1

Value & 
Key

Query


