
Applied Machine Learning for
Business Analytics
Lecture 3: Transformers

Lecturer: Zhao Rui

● HW schedule has been updated.
○ 3 -> 2

● HW1 has been released

Logistics

2

3

4

5

6

4 USD around 2017

7

What happened to NVDA this WEEK?

8

DeepSeek is still on top of Transformer

DeepSeekv3:
https://arxiv.org/ht
ml/2412.19437v1

DeepSeekR1:
https://arxiv.org/ab
s/2501.12948

https://arxiv.org/html/2412.19437v1
https://arxiv.org/html/2412.19437v1
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

Agenda

1. Transformers
2. Attention is all you need

a. Self-Attention
b. Positional Embeddings

3. Summary
4. Appendix

a. Masked Self-Attention
b. Encoder-Decoder Attention

9

1. Transformers

10

11https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

What is Transformer

Transformer is a sequence to sequence model (Encoder and Decoder)

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

12

All LLMs so far use transformer architecture

● BERT and GPT are the most representative ones

Generative Pre-trained
Transformers

Bi-directional Encoder
Representations from
Transformers

13

Transformer is solving Seq2Seq

Input Sequence Sampled word in the output sequence

Next word

14

• Input text is encoded with tokenizers to sequence
of integers

• Input tokens are mapped to sequence of vectors
• Output vectors can be classified to a sequence of

tokens
• Output tokens can then be decoded back to the

text

15

Transformer
1. Transformer block: operation unit

a. Consists of multiple computations
b. A sequence of embeddings in
c. A sequence of embeddings out

2. Encoder:
a. Stack 6 transformer blocks
b. Learn representations for the input

sequence
3. Decoder:

a. Stack another 6 transformer blocks.
b. Generate output sequences

conditioned on the learned
representations from encoder.

Transformer Block

Transformer Block

16

Transformer block in Encoder

1. Input: A sequence of vectors
2. Output: A sequence of vectors
3. Key Components:

a. Self-attention Layer
b. Positional Embeddings
c. Residual and Normalization

Layer
d. Fully-connected Layer

x1

Transformer Block

z1

x2

z2

x3

z3

x4

z4

17

Transformer block in Decoder

1. Input: A sequence of vectors
2. Output: A sequence of vectors
3. Key Components:

a. Masked Self-attention Layer
b. Positional Embeddings
c. Encoder-Decoder Attention
d. Residual and Normalization

Layer
e. Fully-connected Layer

x1

Transformer Block

z1

x2

z2

x3

z3

x4

z4
Encoder
outputs

18

Decoding Process

• The decoder is autoregressive
○ Begins with a start token
○ Before the stop token is generated, repeat

■ Take the list of previous outputs with the encoder outputs that contain the
attention information from the input

■ Generate the current output

19

Start

Transformer Block

z1

Encoder Outputs: Je Suis etudiant

Start

Transformer Block

z1

I

z2

I

am

Decoding Process
Until stop symbol is generated

20

Decoding Process

○ Linear Classifier with Final softmax for output probabilities
■ The output of the classifier would be the size of vocabulary
■ After softmax, probability scores between 0 and 1 will be generated
■ Decoding Strategies:

● Greedy search: the index of the highest probability score would be taken to
predict the current word

● Beam search: takes into account the N most likely tokens
● Other advanced sampling: https://deci.ai/blog/from-top-k-to-beam-search-llm-decoding-strategies/

https://deci.ai/blog/from-top-k-to-beam-search-llm-decoding-strategies/

21

Temperature Sampling

22

Temperature Sampling

23

Encoder-Decoder

Source:
https://towardsdatascience.com/transformers-explained-
visually-part-2-how-it-works-step-by-step-b49fa4a64f34

Three kinds of attention in transformers:
● Self-attention

○ Input sequence <> Input sequence
● Masked self-attention

○ Previous steps in output sequence <> current steps in
output sequence

● Encoder-Decoder attention
○ Input sequence <> Output sequence

https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-works-step-by-step-b49fa4a64f34
https://towardsdatascience.com/transformers-explained-visually-part-2-how-it-works-step-by-step-b49fa4a64f34

2. Attention

24

Word Embeddings

25

● Apple in two sentences:
○ Sentence 1: My favorite fruit is apple
○ Sentence 2: Solution: My favorite brand is apple

apple

Word embeddings’ space

One embedding has multiple senses

Contextualized Word Embeddings

26

● Telling context in words
○ Sentence 1: My favorite fruit is apple1
○ Sentence 2: Solution: My favorite brand is apple2

fruit apple

brand
Word embeddings’ space

From nearby words, we can guess two
different meanings of this word (i.e.,
food and brand)

Contextualized Word Embeddings

27

● Telling context in words
○ Sentence 1: My favorite fruit is apple1
○ Sentence 2: Solution: My favorite brand is apple2

fruit
apple

brand
Word embeddings’ space

apple1

apple2

1. In sentence 1, move the word
embedding of apple towards the
word “fruit”

2. In sentence 2, move the word
embedding of apple toward the
word “brand”

This is how attention
will work

How to move one word closer to another one

28

● Average two words
○ apple1 = 0.8*apple + 0.2*fruit = 0.8*[5,7] + 0.2*[0,8]= [4.0, 7.2]
○ apple2 = 0.9*apple + 0.1*brand = 0.9*[5,7] + 0.1*[6,0]= [5.1, 6.3]

Embeddings

Similarity/Attention

fruit
[0, 8] apple

Brand
[6, 0]Word embeddings’ space

apple1

apple2

[5, 7]

Attention mechanism is able to learn
multiple embeddings for the same
word in multiple sentences

How to derive similarity

29

● Apple in two sentences:
○ Sentence 1: My favorite fruit is apple
○ Sentence 2: My favorite brand is apple

● Why we move apple to fruit in sentence 1? Instead of other words as “my” and
“is”

● It is based on the similarity!
● Assume every word has its own base vector (as word2vec), the contextualized

word embedding of apple in the sentence: my favorite fruit is apple

= Attention(apple, my)*base_vec(my) + Attention(apple, favorite)*base_vec(favorite) + Attention(apple, fruit)*base_vec(fruit) + Attention(apple, is)*base_vec(is) + Attention(apple, apple)*base_vec(apple)

Target word Context word

How to derive similarity

30

● Via embeddings, the similarity between two irrelevant words would be zero,
while the similarity between the related pair would be high

my favourite fruit is apple

my 1 0 0 0 0

favourite 0 1 0 0 0

fruit 0 0 1 0 0.25

is 0 0 0 1 0

apple 0 0 0.25 0 1

my favourite brand is apple

my 1 0 0 0 0

favourite 0 1 0 0 0

brand 0 0 1 0 0.11

is 0 0 0 1 0

apple 0 0 0.11 0 1

How to derive similarity

31

● The diagonal entries are all 1
● The similarity between any irrelevant words is 0 (for simplicity)
● The similarity between apple and fruit is 0.25 while the one between apple and

brand is 0.11 considering apple is used more often in the same context as fruit

my favourite fruit is apple

my 1 0 0 0 0

favourite 0 1 0 0 0

fruit 0 0 1 0 0.25

is 0 0 0 1 0

apple 0 0 0.25 0 1

my favourite brand is apple

my 1 0 0 0 0

favourite 0 1 0 0 0

brand 0 0 1 0 0.11

is 0 0 0 1 0

apple 0 0 0.11 0 1

How to derive similarity

32

● Contextualized Target Word = The sum of a product between the similarity
between target word and context word * context word embeddings

● We should also normalize the similarity along the sentence (softmax)
● Therefore

○ my (in the sentence 1) = my
○ apple (in the sentence 1) = 0.2 * fruit + 0.8 * apple
○ apple (in the sentence 2) = ?

my favourite fruit is apple

my 1 0 0 0 0

favourite 0 1 0 0 0

fruit 0 0 0.8 0 0.2

is 0 0 0 1 0

apple 0 0 0.2 0 0.8

my favourite brand is apple

my 1 0 0 0 0

favourite 0 1 0 0 0

brand 0 0 0.9 0 0.9

is 0 0 0 1 0

apple 0 0 0.1 0 0.1

Normalized

33

Contextualized Word Embeddings

• Transformers is proposed to learn better feature for NLP data
• The core layer is self-attention layer which can map a sequence of word embeddings to

another sequence of word embeddings which is contextualized

money

Contextualized Word Embedding

in the bank

Contextualized Word Embedding

the river bank

blood

Contextualized Word Embedding

bank collects blood

along

Encoded Embeddings

Different Contexts,
Different Encoded Embeddings for bank.

What is BERT

34

• Bidirectional Encoder Representations from Transformers (BERT)
• BERT: Encoder of Transformer,

BERT

the river bankalong

Transformer

Solve Seq2Seq Task

Given a sequence of words, generate a
sequence of vectors and then can be used
for various NLP tasks

Contextualized Word Embeddings

35

money

Contextualized Word Embedding

in the bank

Contextualized Word Embedding

the river bank

blood

Contextualized Word Embedding

bank collects blood

along

Encoded Embeddings

Different Contexts,
Different Encoded Embeddings for bank.

Embeddings generated from BERT

36

Cos-similarities among vectors of “apple”
in different context

How does BERT compute

37
“Internet fraud is a type of cybercrime fraud”

[CLS] internet fraud is a type of cyber ##cr ##ime fraud [SEP]

101 4274 9861 2003 1037 2828 1997 16941 26775 14428 9861 102

dim:
768

1. Break words into tokens
2.Add [CLS] and [SEP] tokens

3. Replace tokens with their indexes in vocab
BertTokenizer

Bert

https://en.wikipedia.org/wiki/Cybercrime
https://en.wikipedia.org/wiki/Fraud

38

Why is the reading range limited?

2.1 Self-Attention

39

Basic Self-Attention

40

● A sequence-to-sequence operation taking a sequence of vectors in and
generate a sequence of vectors out

○ [x1, x2, x3] -> [z1, z2, z3]
● Relating different positions of the input sequence in order to compute the

representation

x1

x1

x2

x2

x2

x2

x3

x3

x2

z2z1 z3

Basic Self-Attention

41

my favourite fruit is apple

my 1 0 0 0 0

favourite 0 1 0 0 0

fruit 0 0 1 0 0.25

is 0 0 0 1 0

apple 0 0 0.25 0 1

Sentence i: My favourite fruit is apple New Word Index

my_i

favourite_i

fruit_i

is_i

apple_i

Attention Step

my

favourite

0.8*fruit+0.2*apple

is

0.2*fruit+0.8*apple

Basic Self-Attention

42

● There are no model parameters. It is totally determined by the embedding
layer

○ Solution: introduce model parameters -> using three sets of embeddings to get contextualized
embeddings

● Self attention is permutation equivariant. It ignores the order information.
○ Solution: add positional embeddings

Self-Attention layer

43

Step 1: Generate query, key, and value vector for the input vector at each time step.

attention

x1

k1q1 v1

x2

k2q2 v2

x3

k3q3 v3

q

k

v

Query (to match others): qi=Wqxi

attention

Key (to be matched): ki=Wkxi

attention

Value (representation): vi=Wvxi

attention

Word embeddings

Model parameters are introduced here.

In practice, bias vectors may be added to
the product of matrix multiplication

44

Self-Attention layer

45

Step 2: Compute attention scores using query vectors and key vectors

x1

k1q1 v1

x2

k2q2 v2

x3

k3q3 v3

Word vectors

a11 a12 a13

To encode the i-th word in the sequence, we need to compute the attention scores between this i-th word
and all the words in the sequence.

1. Pick the query vector from the i-th word: qi

2. Attention score computation between qi and all key vectors of the nearby words (including the target
word itself)

Dim of key vectors

Self-Attention layer

46

Step 3: Fed unscaled attention scores into softmax layers

x1

k1q1 v1

x2

k2q2 v2

x3

k3q3 v3

Word vectors

a11 a12 a13

Softmax: normalized to prob. scores

Self-Attention layer

47

Step 4: Take the sum of all the value vectors weighted by the attention scores.

x1

k1q1 v1

x2

k2q2 v2

x3

k3q3 v3

Word vectors

z1

Encoded vector for
the first element

Self-Attention layer

48

Step 5: All elements in input sequence xi will be encoded into new vectors zi

x1

k1q1 v1

x2

k2q2 v2

x3

k3q3 v3

Word vectors

z2

Encoded vector for
the second element

Matrix formulation

49

x1

Self-Attention Layer

z1

x2

z2

x3

z3

x4

z4

zi can be computed parallelly based on the whole
input sequence.

q1 q2 q3 q4

k1 k2 k3 k4

v1 v2 v3 v4

Matrix
Multiplication

Multi-head Self-Attention

50

● Model parameters: Wk, Wq, Wv specific one kind of attention
● We can have multiple set of Wk, Wq, Wv

z1

z1

z1

x1

k1q1 v1

x3

k3q3 v3

x1

k1q1 v1

x3

k3q3 v3

Self-attention head 0 Self-attention head 1

z1 z3 z1 z3

z1

z3
z2

z1

z3
z2

Concatenating all heads

51

High attention from one
head

High attention from another
head

Head here is similar to
1. the filter in convolutional layer
2. the neuron in fully-connected layer

Illustration of Self-Attention
● Multi-head means separate Wk, Wq, Wv matrices

○ Expands the model’s ability to focus on different positions
○ Gives the attention layer multiple “representation subspaces”
○ For example, two-head self-attention

Multi-head Self-Attention

52

● If the layer has k heads, the output would be k sets of embeddings
● We need to reduce the dimensionality by concatenating and projection into the low

dimensional
○ For example, as below: 4->32->4

dim-4 dim-32
dim-4

Self-attention layer

53

MultiHeadAttention in Keras

54

MultiHeadAttention in Keras

55

MultiHeadAttention in Keras

56

If we change the key_dim from 2 to 5?

https://github.com/rz0718/BT5153_2024
/blob/main/codes/lab_lecture08/Attention_Layer_in_Keras.ipynb

https://github.com/rz0718/BT5153_2023/blob/main/codes/lab_lecture08/Attention_Layer_in_Keras.ipynb
https://github.com/rz0718/BT5153_2023/blob/main/codes/lab_lecture08/Attention_Layer_in_Keras.ipynb

2.2 Position Embedding

57

Positional embeddings

58

● No position information in self-attention
● Positional Embeddings: each position has a unique positional vector PE(pos)

○ Add this vector to each input embeddings
○ Expands the model’s ability to focus on different positions.

x1

Transformer Block #0

x2 x3 x4

Transformer Block #1

PE1 PE2 PE3 PE4

x1 x2 x3 x4 Input Embedding Matrix (Learned from the data)

Positional Embedding Matrix (Pre-defined and Fixed)

Vocab
size

Dim.

Max. Length
of Input
Sequence

Dim.

Positional embeddings

59

● The equation in the original paper:

More details: https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Core idea: using fixed weights which encode
information related to a specific position of a token
in a sentence

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

3. Summary

60

A “functional” viewpoint on Transformer

61

Sequence to Sequence mapping with multiple matrix
multiplication

Input: [batch, d_embedding, length]
Output: [batch, d_embedding, length]

Loss function (predict next token
given previous context)

Function
parameters are
updated via
backpropagation.

● Compared to Transformers, RNN
○ can not be trained in parallel
○ suffers from long dependency issues

● Compared to Transformers, CNN
○ is unable to capture all possible combinations of words (filter size is predefined)

● Compared to the previous NN, Transformers
○ Non sequential: the input sequence are processed as a whole
○ Self Attention: contextualized word embeddings
○ Positional embeddings: a better way than recurrence to capture order information

● Podcast about transformers
○ https://www.youtube.com/watch?v=9uw3F6rndnA

Transformers is replacing RNN and CNN

62

Source:
https://blog.research.google/2017/08/tra
nsformer-novel-neural-network.html

https://www.youtube.com/watch?v=9uw3F6rndnA
https://blog.research.google/2017/08/transformer-novel-neural-network.html
https://blog.research.google/2017/08/transformer-novel-neural-network.html

The illustrated transformer (the source of the awesome visualizations)

Must Read !!

http://jalammar.github.io/illustrated-transformer/

● Build Transformer from Scratch
● We can import it from huggingface

Implementations of Transformers

https://nlp.seas.harvard.edu/2018/04/03/attention.html

65

Next Class: LLM I

Appendix

66

Masked Self-Attention

67

Masked Self-Attention

68

● This is the attention layer used to compute the dependency among the target words
● Since the sequence is generated word by word, we need to prevent it from conditioning

to the future tokens
● For example:

○ to generate “a”, we should not have access to “student”

attention
I am a stud

ent

I 0.7 0.1 0.1 0.1

am 0.1 0.6 0.2 0.1

a 0.1 0.3 0.6 0.1

stud
ent

0.1 0.3 0.3 0.3

Target Self Attention Score Look-ahead Bias

I am a stud
ent

I 0 -inf -inf -inf

am 0 0 -inf -inf

a 0 0 0 -inf

stud
ent

0 0 0 0

I am a stud
ent

I 0.7 -inf -inf -inf

am 0.1 0.6 -inf -inf

a 0.1 0.3 0.6 -inf

stud
ent

0.1 0.3 0.3 0.3

Masked Self Attention Score

Masked Self-Attention

69

● Add look-ahead mask matrix
● Apply softmax to get the probabilistic scores

○ The negative infinities would become zero after softmax
○ For example, the attention score for “a”

■ has values for itself and all words before it
■ Zero for the word “student”

attention
I am a student

I 0.7 -inf -inf -inf

am 0.1 0.6 -inf -inf

a 0.1 0.3 0.6 -inf

student 0.1 0.3 0.3 0.3

Masked Self Attention Score

I am a student

I 1 0 0 0

am 0.37 0.62 0 0

a 0.26 0.3 0.43 0

student 0.21 0.26 0.26 0.26

Normalized Masked Self-Attention Scores

softmax

Encoder-decoder Attention

70

Encoder-decoder attention

71

Attention in decoder layer:

1. Attention vectors: a vector of importance weights (measure the interaction between each
target word with each input word)

2. The target is approximated by the sum of their input values weighted by the attention
scores.

attention

I

je

Input

Output

suis

étudiant

High Attention
Low Attention

Vecstudent=0.15*Vecje + 0.05*Vecsuis + 0.8*Vecetudiant

am a student

Encoder-Decoder attention layer

72

Different from Self attention layer
1. Generate query vector for the generated output sequence (from itself: Decoder)
2. Generate key and value vector for the input sequence at each time step (from Encoder)

attention

je suis eludient

je

suis

eludient

I am a student

je

suis

eludient

Self Attention Score n Encoder-decoder Attention Score

Matrix formulation

73

y1

Encoder-decoder
Attention Layer

z2

y2

h2

q1 q2

k1 k2 k3 k4

v1 v2 v3 v4

Encoder-
Output

z1 z3

h1

Value &
Key

Query

