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1. Improving LLM’s performance 
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Optimization options

● Prompt engineering
○ Modify the prompt to guide the LLM’s outputs

● Retrieval-augmented generation
○ Use the retriever to get external knowledge to enrich the context for LLM

● Fine tuning
○ Tune the LLM (its parameters) to better suit downstream applications
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Iterative process

source

https://www.youtube.com/watch?v=ahnGLM-RC1Y
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2.  Evaluating LLM
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Evaluating LLM  

● Model-based evaluation
○ Use another LLM to evaluate the system’s performances 

● Rule-based evaluation
○ Implement heuristic rule to assess specific aspects of the LLM’s output

● Accuracy metrics
○ If the task has clear labels, metrics can be used such as F1, precision and recall

● End-user feedback and A/B testing
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“Accuracy” Metrics

● Evaluation on standardized benchmarks across all of NLP tasks
● Model Eval Benchmarks

○ GLUE: General language understanding evaluation benchmark provides a standardized set of 
diverse NLP tasks to evaluate the effectiveness of different language models

○ HellaSwag: evaluates how well an LLM can complete a sentence
○ TruthfulQA: measure truthfulness of model responses

https://gluebenchmark.com/
https://rowanzellers.com/hellaswag/
https://github.com/sylinrl/TruthfulQA
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End-user Feedback

● It is the process involving automatic evaluators triggered by new log entries 
derived from live production

● List of metrics as examples:
○ User engagement & utility metrics: number of views

○ User interaction: average number of LLM conversion per user

○ Quality of responses: average length of prompts and responses
○ User feedback and retention: user return rate
○ Performance metrics : latency
○ Cost metrics : infra cost (storage, networks, and computing resources, etc)
○ More metrics could be found here

https://www.microsoft.com/en-us/research/group/experimentation-platform-exp/articles/how-to-evaluate-llms-a-complete-metric-framework/


3. Prompt engineering
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Prompt engineering (Do it first)

● It refers to methods for how to communicate with LLM to steer its behavior for 
desired outcomes without updating the model 

○ More empirical, less scientific

● Advantages
○ Testing and learning early
○ When paired with evaluation it provides your baseline and sets up further optimization

● Disadvantages
○ Introducing new information
○ Reliably replicating a complex style or method
○ Minimizing token usage
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How to prepare a good prompt

● Start with:
○ Write clear instructions
○ Split complex tasks into simpler subtasks
○ Give GPTs time to “think”
○ Test changes systematically 

● Extend to:
○ Provide reference text

■ Few-shot prompt -> RAG
○ Use external tools
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Intuition behind Prompt Engineering 

● LLMs understand better when you use familiar language and constructs
● LLMs can not know everything. If information is neither in training or in the 

prompt, they do not know it 
● If you look at Prompt and you do not understand it, the prompt can not work
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A “bad” prompt

Unclear instructions

Random output
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A “good” prompt

Clear instructions

Give time to think

Break down complex tasks
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A “good” prompt



Prompting techniques
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● Zero-shot prompting
○ No examples are given in prompt

● Few-shot prompting
○ A few shot examples of tasks are provided

● Chain of Thoughts prompting
○ Examples with the reasoning processes are improved. 

● More prompting techniques could be found in this good survey and this 
openAI  blog.

Source: https://arxiv.org/abs/2201.11903

https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://platform.openai.com/docs/guides/prompt-engineering/strategy-write-clear-instructions
https://arxiv.org/abs/2201.11903


Building LLM Applications
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User LLM

Application

Transform user 
problem into model 

domain

Transform   
completion into a 
solution or update 

for user 

user-problem

solution

prompt

completion



Creating the Prompt
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● Create context 
● Rank context 
● Trim context
● Assembling context  



Creating the Prompt - Copilot Example
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● Create context 
○ Current document, open tabs, symbols, file path

● Rank context 
○ Filter path >> current documents >> open tabs 

● Trim context
○ Drop open tab snippets, truncate current documents 

● Assembling context  



4.  RAG
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What is RAG

● Retrieval-Augmented Generation 
○ A process to optimize the output of a LLM, so it references an 

authoritative knowledge base outside of its training data sources 
before responding. 

● Benefits of RAG

○ Cost-effective implementation
○ Current information
○ Enhanced user trust
○ More develop control

source: https://aws.amazon.com/what-is/retrieval-augmented-generation/

https://aws.amazon.com/what-is/retrieval-augmented-generation/
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One trivial example

● LLM is trained before the course website was built

What is the course title of BT5153 offered by NUS?

Retriever

Knowledge Base

It can be in webpage, pdf files, or even 
images/videos.

Retrieved document

Generator
(LLMs)

The title of the course is applied machine learning for 
business analytics.

Query Prompt Template

Answer the user’s question with the following content:
Question: {What is the course title….}
Content: {BT5153 Applied Machine….}

Embeddings

Answer
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Old wine in new bottles 

● RAG is not:
○ A new idea
○ A framework 

● RAG is just combining Retrieval and Generation
○ Retrieval comes from Information Retrieval (IR):

■ The process of obtaining relevant information based on a user’ information need 
expressed as a query/question

■ It is a research topic in computer science for decades
○ Generation is handled by LLMs 
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“Good” RAG

● Good retrieval pipeline 
● Good generative model 
● Good way of linking them up 



27

Performance issues with Naive RAG 

● Bad Retrieval
○ Low precision: not all retrieved chunks are relevant

■ Hallucination + Wrong replies
○ Low recall: not all relevant chunks are retrieved

■ Lacks enough context for LLM to synthesize the answer
○ Outdated information: the knowledge base is out of date

● Bad Response Generation (Native LLM Issues)

○ Hallucination: Model makes up an answer that isn’t in the context
○ Irrelevance: Model makes up an answer that does not answer the question 
○ Toxicity/Bias: Model makes up an answer that is offensive 
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Start from Basic - Retrieval Pipeline

Document

This is called a Bi-encoder approach

Query Embedding 
Model

Vectors 

Embedding 
Model

Cosine Similarity 
Search 

Results

Vectors
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Start from Basic - Retrieval Pipeline

Query Embedding 
Model

Vectors Model

Document Embedding 
Model

Vectors

Cosine Similarity 
Search 

Results

Load Bi-encoder
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Vector DB

● As the crucial part of RAG pipeline, search index supports the retrieval of 
content based on query

○ Indexing
■ Naive implementation: flat index

● A brute force distance calculation between the query vector and all the chunks’ 
vectors

○ Retrieving (nearest neighbours searching)
■ Efficient framework: 

● Open-source libraries: Faiss, Annoy 
● Managed solutions: Pinecone

https://faiss.ai/
https://github.com/spotify/annoy
https://www.pinecone.io/
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Numpy is the vector DB

● The vector DB (or an index) 
○ Allow Approximate search to avoid computing too many distance scores 
○ It is only applicable for large scales retrieval 

● Any modern CPU can search through hundreds of vectors in milliseconds 
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Dense Representation

● Vectorisation  
○ The embedding model should be selected. 
○ Search optimized models: 

■ The leaderboard for massive text embedding benchmark 
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Dense Representation

● Compressing information from tokens to a single vector is bound to lose 
information

● Embeddings learned is limited to the training data of the embeddings models 
● Fixed Vocabulary 

○ Llama 3 2024 => [‘ll’, ‘##ama’, ‘3’, ‘202’, ‘##4’]
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Sparse Representation - BM25

● Keyword search, is built on an old technology: BM25
○ Based on TF-IDF (sparse) 
○ Pretty powerful on longer documents and documents containing a lot of domain-specific jargon
○ It’s inference-time compute overhead is quite tiny 

● Free lunch for any pipeline 
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Hybrid: dense + sparse

● Combine spread and dense representations

Document

Query

Bi-encoder 

Cosine Similarity 
Search 

Combine the 
scores

Bi-encoder

Tf-idf

Tf-idf 

BM25 (full-text) 
search

Results
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Bi-encoder

● Bi-encoders are (generally) used to create single-vector representations. They 
pre-compute document representations.

● Documents and query representations are computed entirely separately, they 
are not aware of each other 

● Thus, document vectors can be pre-computed and at inference, encode your 
query and search for similar vectors

○ Very computationally efficient 
○ It comes with retrieval performance tradeoffs.
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Bi-encoder vs Cross Encoder

Source: https://osanseviero.github.io/hackerllama/blog/posts/sentence_embeddings2/

Query Ref. Chunk Query Ref. Chunk

https://osanseviero.github.io/hackerllama/blog/posts/sentence_embeddings2/
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Given 10 queries and 1000 chunks in the reference:

● For Bi-encoder, how many times that the transformer would be called? 
● For Cross-Encoder, how many times that the transformer would be called? 
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Reranker: The power of Cross-Encoders 

● Leverage a powerful but computationally expensive model to score only a 
subset of your documents, previously retrieved by a more efficient model.

● One approach: cross-encoder
○ It is effectively a binary classifier

■ The input is a pair of query and document
■ The output is the probability of being the positive class as the similarity score

Document

Query

Bi-encoder 

Cosine Similarity 
Search 

Combine the 
scores

Bi-encoder

Tf-idf

Tf-idf 

BM25 (full-text) 
search

ResultsReranking
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Metadata filter

● Documents do not exist in a vacuum. There is a lot of metadata around them, 
some of which can be very informative

● Metadata is the context you can add with each text chunk
○ Examples

■ Page number
■ Document title
■ Summary of adjunct chunks
■ Hypothesis questions (reverse HyDE)

● Ask the LLM to generate a question for each chunk
○ Benefits

■ Can help retrieval 
■ Can augment response quality
■ Integrates with Vector DB metadata filters
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Metadata filter

● Query: what is the sales division financial report for Q4 2024?
● Raw top-k retrieval via embeddings/keyword would have low precision

○ The model should accurately capture all of the key meaning: financial report, sales division, Q4 
and 2024. 

○ And the k also can not be set too high. Otherwise irrelevant financial reports would be passed 
to LLM
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Metadata filter

● Apply entity detection models on query such as GliNER 
● Ensure the business/query-relevant information is stored alongside their 

associated documents 
● Than, the extracted entities could be used to pre-filter the documents, 

ensuring we only perform search on documents whose attributes are related 
to the query.  

source: https://huggingface.co/spaces/urchade/gliner_mediumv2.1

https://huggingface.co/spaces/urchade/gliner_mediumv2.1
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The Final MVP

Document

Query

Bi-encoder 

Cosine Similarity 
Search 

Combine the 
scores

Bi-encoder

Tf-idf

Tf-idf 

BM25 (full-text) 
search

ResultsReranking

Meta
data 

Document
filtering 
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The Final MVP

Bi-encoder 

Meta data

Document Filtering 

BM25 (full-text) 
search
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Demo
Code: 
https://colab.research.google.com/drive/1L0VWAgIiywqjNE1
TFmdfusAV86yDuR94?usp=sharing

https://colab.research.google.com/drive/1L0VWAgIiywqjNE1TFmdfusAV86yDuR94?usp=sharing
https://colab.research.google.com/drive/1L0VWAgIiywqjNE1TFmdfusAV86yDuR94?usp=sharing
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How to Improve RAG

● Data
○ Store additional information beyond raw text chunks

● Embeddings
○ Optimize embedding representations

● Retrieval
○ Advanced retrieval instead of top-k embedding lookup

● Synthesis
○ LLMs can play a big role in the process 
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How do we properly evaluate a RAG

● After those changes, we need to evaluate the impacts
○ Evaluate various components

■ Is the retrieval good?
■ Is the LLM good? 

○ Evaluate end-to-end
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“Advanced” Topics for RAG

● Chunking Size
○ Divide large documents into small chunks

● Query Transformation 
● Parametric Retrieval Augmented Generation

See more in the appendix

https://arxiv.org/pdf/2501.15915


5.  Use LangChain to Build RAG
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Build RAG quickly
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Test the flow

● Given the question: How is the dataset prepared to detect the AI-generated 
essays

● Knowledge base: Project paper from last year
● Two LLMs are checked:

○ GPT-40
○ DeepSeek-R1-Distill-Qwen-1.5B
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Build RAG quickly



Appendix
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Chunk sizes

● Chunking  
○ Split texts into chunks of some size without losing their meaning
○ The size of the chunk is also a hyper-parameter to be tuned

■ Embeddings models’ capacity
■ Conflicts between enough context for LLM to reason (wide) and specific enough text 

embedding (narrow) in order to efficiently execute search upon
○ A few chunking techniques:

■ Fixed-size chunking
■ Content-aware chunking

● Sentence splitting: sentence-level chunking
● Specialized chunking: preserve the original structure of the content if it is in 

markdown, latex or other formats
■ A good survey here.

https://www.pinecone.io/learn/chunking-strategies/
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Small-to-Big

● Intuition:
○ Embedding a big text chunk is not optimal
○ Defining a chunking boundaries is completely arbitrary and independent of the relevant context

● Solution: 
○ Embed text at the sentence-level 
○ Expand that window for the context in the query to LLM

Source: https://twitter.com/jerryjliu0/status/1732503009891127676/photo/1

https://twitter.com/jerryjliu0/status/1732503009891127676/photo/1
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Query transformation

Query transformation is referred to those techniques using LLM as a reasoning 
engine to modify user inputs in order to improve retrieval quality

LLMquery

subquery 1

subquery2

subqueryk

Vector Indexing

Topk results 
for sub1

Topk results 
for sub2

Topk results 
for subk

Response
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Query transformation 

● Core idea behind transformation is:
○ Decompose the complex query into several sub queries

● Open-source implementation
○ Multi query retriever in Langchain
○ Sub question query engine in Llamaindex  

https://python.langchain.com/docs/modules/data_connection/retrievers/MultiQueryRetriever?ref=blog.langchain.dev
https://docs.llamaindex.ai/en/stable/examples/query_engine/sub_question_query_engine.html


Chat Template 
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Chat Template 
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● What if you found this scrap of paper on the ground? 
● What do you think the rest of the paper would say?

My cable is out! And I’m going to 
miss the Superbowl!



Chat Template 
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# IT Support Assistant 
The following is a transcript between an 
award winning IT support rep and a 
customer 

## Customer 
My cable is out! And I’m going to miss the 
Superbowl!

## Support Assistant:



Chat Markup Language (ChatML) 
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● A tool that helps manage multi-turn conversion and can also be used for 
non-chat scenarios. 

○ Make model understand where each piece of text comes from
○ The conversion is segregated into three layers:

■ System   
■ Assistant 
■ User 
■ Tool (for some LLMs)

○ <im_start> and <im_end> are special tokens to set boundaries of information.



Chat Markup Language (ChatML) 
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● System message (optional but suggested for better result)
○ It is included at the beginning of the prompt
○ It can have the following info:

■ A brief description of the assistant 
■ Personality traits of the assistant
■ Instructions of rules you would like the assistant to follow 
■ Data or information needed for the model

● Message 
○ It includes a series of message between the user and the assistant 
○ Each message should begin with the <im_start> token followed by the role and end with the 

<im_end> token.
○ To trigger a response from the model, the prompt should end with <im_start>assistant

More info: https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/chat-markup-language

https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/chat-markup-language


Apply Chat Template 
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● Really easy for users to build assistant 
○ Rather than continuing a single string of text, the model will continue a 

conversion 
○ System messages make controlling behavior easy 

● Safety is baked in: 
○ Assistant will (almost) never respond with harmful info
○ Prompt injection is (almost) possible



Apply Chat Template 
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API Chat Markup Language (ChatML)

More details could be found here.

https://huggingface.co/docs/transformers/main/en/chat_templating

