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Agenda
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2. Model Evaluation 
3. Experiment Tracking
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1. Baseline First
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Source: Deep Learning with Bayesian Principles (Emtiyaz Khan, NeurIPS 2019)

https://slideslive.com/38921489/deep-learning-with-bayesian-principles


Architecture evolution

● Fancy models come and go
○ LSTM-RNNs: still used for time series (trading) but for text data, transformers is the first-choice

The fall of RNN and LSTM  https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0

● Be solution-focused, not architecture/buzzword-focused
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Model selection: baselines first

● Random baseline
○ Predict at random:

■ uniform
● Zero rule baseline

○ Predict the most common class always
● Human baseline

○ Human expert?
● Simple heuristic:

○ For example, if your device is linked to multiple accounts (10+), your account will have a high fraud 
risk. 

● Existing solutions:
○ Existing APIs
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Baselines

● Pave the way for iterative development
● Due to low model complexity

○ Rapid experimentation via hyperparameter tuning 
○ Discover of data issues, false assumptions, bugs in ETL or code

● Build the benchmark performances
○ Slowly add complexity by addressing limitations and motivating representations and model 

architectures. 
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Case study: stackoverflow classification

● Random
○ What is the random performance looks like

■ Binary Classification: np.random.randint(low=0, high=2)
○ All of our following trials should perform better than this 
○ Limitations: no inputs information is used. No learning happened
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Case study: stackoverflow classification

● Random
○ No input information is used

● Rule-based
○ We would like to use signals from input data to make predictions
○ Domain knowledge and auxiliary data can be used here. 
○ For example, if len(text) > 200 or code in text, the label will be positive
○ Let us guess how will the rule-based system perform?

■ High Precision low recall
■ Low Precision high recall

○ Limitations: Unable to generalize or capture patterns to make predictions
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Case study: stackoverflow classification

● Random
○ No input information is used

● Rule-based
○ Unable to generalize or capture patterns to make predictions

● Simple ML Systems
○ Representations: using TF-IDF (capture the importances of a token to 

the labels)
○ Architecture: can use various classifiers to predict labels based on 

signals
○ Limitations: 

■ TF-IDF is only counting tokens’ frequency. We need to capture 
high-level semantic meaning

■ Models need to capture the meaning in a more contextual 
manner
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Case study: stackoverflow classification

● Random
● Rule-based
● Simple ML Systems
● CNN with word embeddings
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In this process, we kind of motivate the need for slowly adding complexity 
from both the representation and architecture, as well as address the 
limitation at each step of the way.



2. Model Evaluation
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Model evaluation

● Offline evaluation:
○ Before deployment
○ Our focus today 

● Online evaluation:
○ After deployment
○ ML model monitoring
○ https://christophergs.com/machine%20learning/2020/03/14/how-to-monitor-machine-learning-

models/
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https://christophergs.com/machine%20learning/2020/03/14/how-to-monitor-machine-learning-models/
https://christophergs.com/machine%20learning/2020/03/14/how-to-monitor-machine-learning-models/


ML offline evaluation
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It is not simply computing the accuracy or other global 
metrics. 

Kaggle

Real-World Data Science Problems



Intuition behind model evaluation

● Be clear about what metrics we are prioritizing
● Be careful not to over-optimize on any single metric

○ Trade-off is always there
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Evaluation methods

1. Interpretability
2. Samples Inspection
3. Perturbation Tests
4. Directional Expectation Tests
5. Slice-based Evaluation
6. Model Calibration
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Interpretability

● Interpretability methods such as LIME or SHAP can enable us to inspect the 
inputs to our models

● We can check:
○ Global level -> per class 
○ Local level  -> per single prediction
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Samples inspection

● Confusion Matrix:
○ True positives: prediction = ground-truth

■  Learn about where our model performans well
○ False positives: predict wrongly samples belongs to the class

■ Identify potentially mislabeled samples
○ False negatives: predict wrongly samples does not belongs to the class

■ Identify the model’s less performant areas to upsample later
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Check those FP/FN samples



Perturbation tests

● Motivation: users input might contain noise, making it different from test data
● Idea: randomly add small noise to test data to see how much outputs change
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Perturbation tests

● Motivation: users input might contain noise, making it different from test data
● Idea: randomly add small noise to test data to see how much outputs change
● The more sensitive the model is to noise:

○ The harder it is to maintain
○ The more vulnerable the model is to adversarial attacks
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Perturbation tests

● Motivation: users input might contain noise, making it different from test data
● Idea: randomly add small noise to test data to see how much outputs change
● If the model failed the perturbation tests, the solutions could be:

○ Add noise to training data
○ Add more training data
○ Select more robust model (simpler model)
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● Motivation: some changes to inputs should cause predictable changes in 
outputs

○ E.g. when predicting housing prices:
■ Increasing lot size shouldn’t decrease the predicted price
■ Decreasing square footage shouldn’t increase the predicted price

Directional expectation tests
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● Motivation: some changes to inputs should cause predictable changes in 
outputs

● Idea: keep most features the same, but change certain features to see if 
outputs change predictably

● For example, if increasing lot size consistently reduces the predicted price, you 
might want to investigate why!

Directional expectation tests
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2.5 Slice-based Evaluation
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Why not coarse-grained evaluation

● Overall metrics is a good start. However, it may hide:
○ Model biases
○ Potential for improvement
○ Which model will you select? 
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Overall 
accuracy

Model A 96.2%

Model B 95%



Different performance on different slices

● Classes
○ Might perform worse on minority classes

● Subgroups
○ Gender
○ Location
○ Time of using the app
○ etc.
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Fine-grained evaluation

● The date samples have:
○ Majority group: 90%
○ Minority group: 10%

● Then, which model will you chose? 
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Majority 
accuracy

Minority 
accuracy

Overall 
accuracy

Model A 98% 80% 96.2%

Model B 95% 95% 95%



Same performance on different slices with different 
cost
● User churn prediction

○ Paying users are more critical

● Predicting adverse drug reactions
○ Patients with underlying conditions are more critical
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Focusing on improving only overall metrics might hurt 
performance on subgroups 



Slice-based evaluation

● Evaluate your model on different slices
○ E.g. when working with website traffic data, slice data among:

■ gender
■ mobile vs. desktop
■ browser
■ location

● Check for consistency over time
○ E.g. evaluate your model on data slices from each day
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Slice-based evaluation

● Improve model’s performance both overall and on critical data
● Help avoid biases
● Even when you don’t think slices matter, slicing can:

○ give you confidence on your model (to convince your boss)
○ might reveal non-ML problems
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How to identify slices?

● Manual Slices (based on subject matter expertise)
○ Classes
○ Features
○ Metadata 

■ Timestamps, sources
○ Priority slices 

■ Minority groups, high value customers
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How to identify slices?

● Manual Slices (based on subject matter expertise)
● Slice finder

○ SliceLine
■ Use linear-algebra and pruning based method to find large slices that result in meaningful 

errors
○ Clustering
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https://mboehm7.github.io/resources/sigmod2021b_sliceline.pdf
https://arxiv.org/pdf/2011.12945.pdf


2.6 Model Calibration 
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Model calibration

“One of the most important tests of a forecast — I would argue that it is the single 
most important one — is called calibration.”

Nate Silver, The Signal and the Noise
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What is calibration 

● Assumption: the probability associated with the predicted class label should 
reflect its ground truth correctness likelihood

● Reality:  complex models are no longer well-calibrated
○ Random Forest, SVMs, Naive Bayes, Deep Learning

● If model is well calibrated:
○ If you predict team A wins in A vs B match with 60% probability:

■ In 100 A vs. B match, A should win 60% of the time!
○ In binary classification, if the model’s predictions over 100 samples whose prob. score of 

positive class is 0.6
■ It means 60 samples here are positive (ground truth) 
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Why calibration matters

● The high-level idea here is that with calibration, we can interpret the estimated 
probabilities as long-run frequencies.

● Estimated probabilities allow flexibility
● Model modularity
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Model calibration: CTR

● The classifier is used to predict whether the user will click the add:
○ User A:  ad 1 (20%) ad 2 (40%), ad 3  (8%), ad 4 (10%)
○ User B:  ad 1 (30%) ad 2 (4%), ad 3  (80%), ad 4 (20%)
○ User C:  ad 1 (15%) ad 2 (50%), ad 3  (10%), ad 4 (30%)

● Do we need to calibrate models if we want to rank ads for users 
(personalization)? 
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Model calibration: CTR

● The classifier is used to predict whether the user will click the add:
○ User A:  ad 1 (20%) ad 2 (40%), ad 3  (8%), ad 4 (10%)
○ User B:  ad 1 (30%) ad 2 (4%), ad 3  (80%), ad 4 (20%)
○ User C:  ad 1 (15%) ad 2 (50%), ad 3  (10%), ad 4 (30%)

● Do we need to calibrate models if we want to rank ads for users 
(personalization)? 
○ No need to calibrate. The probability are only used for comparison. 
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Model calibration: CTR

● The classifier is used to predict whether the user will click the add:
○ User A:  ad 1 (20%) ad 2 (40%), ad 3  (8%), ad 4 (10%)
○ User B:  ad 1 (30%) ad 2 (4%), ad 3  (80%), ad 4 (20%)
○ User C:  ad 1 (15%) ad 2 (50%), ad 3  (10%), ad 4 (30%)

● Do we need to calibrate models if we want to calculate the expected number 
of clicks? 

○ The expected clicks for ad1 is 0.2 + 0.3 + 0.15 + …..
○ The expected number can be used to estimated the revenue before we really launch the ads? 
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Model calibration: CTR

● The classifier is used to predict whether the user will click the add:
○ User A:  ad 1 (20%) ad 2 (40%), ad 3  (8%), ad 4 (10%)
○ User B:  ad 1 (30%) ad 2 (4%), ad 3  (80%), ad 4 (20%)
○ User C:  ad 1 (15%) ad 2 (50%), ad 3  (10%), ad 4 (30%)

● Do we need to calibrate models if we want to calculate the expected number 
of clicks? 

○ The expected clicks for ad1 is 0.2 + 0.3 + 0.15 + …..
○ The expected number can be used to estimated the revenue before we really launch the ads?
○ We need calibrated probabilities to estimate the expected number of clicks 

41

Allow flexibility



Reliability plot
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Tutorial: 
https://www.youtube.com/watch?v=hWb-MIXKe-s

● Plot predicted probability against your empirical probability for some quantity 
buckets of the data



Reliability plot
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Case
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Source: https://scikit-learn.org/stable/modules/calibration.html

Which machine learning model is the best 
calibrated one?



Calibration methods
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● View the classifier as a black-box and learn a calibration function which 
transforms your prob. output to be calibrated 

○ Do you remember some previous methods we discussed? 

● Different approaches for the calibration function:
○ Platt’s scaling (Sklearn)

■ sklearn.calibration.CalibratedClassifierCV
■ https://github.com/gpleiss/temperature_scaling

○ Isotonic Regression (Sklearn)
○ Tensorflow Lattices

https://www.tensorflow.org/lattice/overview


3. Experiment Tracking
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Key terms 
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● ML experiment:
○ The process of developing the ML model

● Experiment run: 
○ each trial in an ML experiment

● Run artifact:
○ Any file that is associated with an ML run like models, images, in-memory objects and etc.

● Experiment metadata
● Experiment Tracking is the process to manage all experiments and their 

meta-data
○ Parameters
○ Metrics
○ Models
○ Other Artifacts



Experiment tracking
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● In the life cycle of machine learning, we will train and evaluate tons of different 
machine learning models (representations, architectures, and 
hyperparameters)

● Experiment tracking is the process to manage all experiments and their 
meta-data

○ Source code
○ Environment
○ Data
○ Model
○ Hyperparameters
○ Metrics
○ Other Artifacts



Why experiment tracking matters
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● With tracking, we can
○ Organize all the necessary components of a specific experiments

■ Where is my phone? 
○ Reproduce past results using saved experiments
○ Log iterative improvements across time, data, ideas, teams, etc



Before tracking tools
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Source: 
https://dr.ntu.edu.sg/bitstream/10356/83235/1/Topic-Aware%20Deep%20Compositional%20Models%20for%20
Sentence%20Classification.pdf



Before tracking tools
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Before tracking tools
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● Even we use spreadsheets:
○ Error prone
○ No standard format
○ Visibility & Collaboration



Tracking tools
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● MLFow: 100% Free and open-source
○ Used by Azure, Facebook, Databricks

● Comet ML
○ Used by Google AI, HuggingFace

● Neptune
○ Used by NewYorkers

● Weights and Biases
○ Used by Open AI

https://mlflow.org/
https://www.comet.ml/site/
https://neptune.ai/
https://wandb.ai/site


MLflow
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● Definition: “An open source platform for the machine learning lifecycle”
● It is a python package with four main modules:

○ Tracking
○ Models 
○ Model Registry
○ Projects 

Source: https://mlflow.org/docs/latest/index.html
MLflow make experiments tracking manageable 
with minimal code.

https://mlflow.org/docs/latest/index.html


Track experiments using MLflow
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● MLflow Tracking module can organize the experiments into runs, and to keep 
track of 

○ Parameters
○ Metrics
○ Metadata
○ Artifacts
○ Models

● In each run, MLflow will automatically logs extra information including:
○ Source code
○ Version of the code
○ Start and end time
○ Author 

● MLflow server also provides GUI to manage and check all of stored data



Storage location of MLflow
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● Storage Location: 
○ Local files 

■ ./mlruns folders (local filesystem)
○ SQLite 
○ Postgre SQL
○ S3 database
○ More details could be found: 

■ https://mlflow.org/docs/latest/tracking.html#how-runs-and-artifacts-are-recorded

https://mlflow.org/docs/latest/tracking.html#how-runs-and-artifacts-are-recorded


Setup MLflow on localhost with tracking server
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MLflow on localhost with tracking server
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Experiments Run Files



Track experiments - after MLflow

59



Track experiments - after MLflow
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Log metrics - after MLFlow
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Log parameters - after MLFlow
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Track experiments - after MLFlow 
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● For Deep Learning, the epoch performances can also be traced



Reproduce a model - after MLFlow
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Next Class: Model Deployment


