
Applied Machine Learning for
Business Analytics
Lecture 9: Model Evaluation in Machine Learning

Lecturer: Zhao Rui

2

Agenda

1. Baseline First
2. Model Evaluation
3. Experiment Tracking

3

1. Baseline First

4

Neural networks

Feed-forward NNs

CNNs
local information

RNNs

weights sharing

across steps

Transformers
self-attention

Graph NNs

element re
latio

ns

Bayesian NNs

priors

5

Source: Deep Learning with Bayesian Principles (Emtiyaz Khan, NeurIPS 2019)

https://slideslive.com/38921489/deep-learning-with-bayesian-principles

Architecture evolution

● Fancy models come and go
○ LSTM-RNNs: still used for time series (trading) but for text data, transformers is the first-choice

The fall of RNN and LSTM https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0

● Be solution-focused, not architecture/buzzword-focused

6

Model selection: baselines first

● Random baseline
○ Predict at random:

■ uniform
● Zero rule baseline

○ Predict the most common class always
● Human baseline

○ Human expert?
● Simple heuristic:

○ For example, if your device is linked to multiple accounts (10+), your account will have a high fraud
risk.

● Existing solutions:
○ Existing APIs

7

Baselines

● Pave the way for iterative development
● Due to low model complexity

○ Rapid experimentation via hyperparameter tuning
○ Discover of data issues, false assumptions, bugs in ETL or code

● Build the benchmark performances
○ Slowly add complexity by addressing limitations and motivating representations and model

architectures.

8

Case study: stackoverflow classification

● Random
○ What is the random performance looks like

■ Binary Classification: np.random.randint(low=0, high=2)
○ All of our following trials should perform better than this
○ Limitations: no inputs information is used. No learning happened

9

Case study: stackoverflow classification

● Random
○ No input information is used

● Rule-based
○ We would like to use signals from input data to make predictions
○ Domain knowledge and auxiliary data can be used here.
○ For example, if len(text) > 200 or code in text, the label will be positive
○ Let us guess how will the rule-based system perform?

■ High Precision low recall
■ Low Precision high recall

○ Limitations: Unable to generalize or capture patterns to make predictions

10

Case study: stackoverflow classification

● Random
○ No input information is used

● Rule-based
○ Unable to generalize or capture patterns to make predictions

● Simple ML Systems
○ Representations: using TF-IDF (capture the importances of a token to

the labels)
○ Architecture: can use various classifiers to predict labels based on

signals
○ Limitations:

■ TF-IDF is only counting tokens’ frequency. We need to capture
high-level semantic meaning

■ Models need to capture the meaning in a more contextual
manner

11

Case study: stackoverflow classification

● Random
● Rule-based
● Simple ML Systems
● CNN with word embeddings

12

In this process, we kind of motivate the need for slowly adding complexity
from both the representation and architecture, as well as address the
limitation at each step of the way.

2. Model Evaluation

13

Model evaluation

● Offline evaluation:
○ Before deployment
○ Our focus today

● Online evaluation:
○ After deployment
○ ML model monitoring
○ https://christophergs.com/machine%20learning/2020/03/14/how-to-monitor-machine-learning-

models/

14

https://christophergs.com/machine%20learning/2020/03/14/how-to-monitor-machine-learning-models/
https://christophergs.com/machine%20learning/2020/03/14/how-to-monitor-machine-learning-models/

ML offline evaluation

15

It is not simply computing the accuracy or other global
metrics.

Kaggle

Real-World Data Science Problems

Intuition behind model evaluation

● Be clear about what metrics we are prioritizing
● Be careful not to over-optimize on any single metric

○ Trade-off is always there

16

Evaluation methods

1. Interpretability
2. Samples Inspection
3. Perturbation Tests
4. Directional Expectation Tests
5. Slice-based Evaluation
6. Model Calibration

17

Interpretability

● Interpretability methods such as LIME or SHAP can enable us to inspect the
inputs to our models

● We can check:
○ Global level -> per class
○ Local level -> per single prediction

18

Samples inspection

● Confusion Matrix:
○ True positives: prediction = ground-truth

■ Learn about where our model performans well
○ False positives: predict wrongly samples belongs to the class

■ Identify potentially mislabeled samples
○ False negatives: predict wrongly samples does not belongs to the class

■ Identify the model’s less performant areas to upsample later

19

Check those FP/FN samples

Perturbation tests

● Motivation: users input might contain noise, making it different from test data
● Idea: randomly add small noise to test data to see how much outputs change

20

Perturbation tests

● Motivation: users input might contain noise, making it different from test data
● Idea: randomly add small noise to test data to see how much outputs change
● The more sensitive the model is to noise:

○ The harder it is to maintain
○ The more vulnerable the model is to adversarial attacks

21

Perturbation tests

● Motivation: users input might contain noise, making it different from test data
● Idea: randomly add small noise to test data to see how much outputs change
● If the model failed the perturbation tests, the solutions could be:

○ Add noise to training data
○ Add more training data
○ Select more robust model (simpler model)

22

● Motivation: some changes to inputs should cause predictable changes in
outputs

○ E.g. when predicting housing prices:
■ Increasing lot size shouldn’t decrease the predicted price
■ Decreasing square footage shouldn’t increase the predicted price

Directional expectation tests

23

● Motivation: some changes to inputs should cause predictable changes in
outputs

● Idea: keep most features the same, but change certain features to see if
outputs change predictably

● For example, if increasing lot size consistently reduces the predicted price, you
might want to investigate why!

Directional expectation tests

24

2.5 Slice-based Evaluation

25

Why not coarse-grained evaluation

● Overall metrics is a good start. However, it may hide:
○ Model biases
○ Potential for improvement
○ Which model will you select?

26

Overall
accuracy

Model A 96.2%

Model B 95%

Different performance on different slices

● Classes
○ Might perform worse on minority classes

● Subgroups
○ Gender
○ Location
○ Time of using the app
○ etc.

27

Fine-grained evaluation

● The date samples have:
○ Majority group: 90%
○ Minority group: 10%

● Then, which model will you chose?

28

Majority
accuracy

Minority
accuracy

Overall
accuracy

Model A 98% 80% 96.2%

Model B 95% 95% 95%

Same performance on different slices with different
cost
● User churn prediction

○ Paying users are more critical

● Predicting adverse drug reactions
○ Patients with underlying conditions are more critical

29

Focusing on improving only overall metrics might hurt
performance on subgroups

Slice-based evaluation

● Evaluate your model on different slices
○ E.g. when working with website traffic data, slice data among:

■ gender
■ mobile vs. desktop
■ browser
■ location

● Check for consistency over time
○ E.g. evaluate your model on data slices from each day

30

Slice-based evaluation

● Improve model’s performance both overall and on critical data
● Help avoid biases
● Even when you don’t think slices matter, slicing can:

○ give you confidence on your model (to convince your boss)
○ might reveal non-ML problems

31

How to identify slices?

● Manual Slices (based on subject matter expertise)
○ Classes
○ Features
○ Metadata

■ Timestamps, sources
○ Priority slices

■ Minority groups, high value customers

32

How to identify slices?

● Manual Slices (based on subject matter expertise)
● Slice finder

○ SliceLine
■ Use linear-algebra and pruning based method to find large slices that result in meaningful

errors
○ Clustering

33

https://mboehm7.github.io/resources/sigmod2021b_sliceline.pdf
https://arxiv.org/pdf/2011.12945.pdf

2.6 Model Calibration

34

Model calibration

“One of the most important tests of a forecast — I would argue that it is the single
most important one — is called calibration.”

Nate Silver, The Signal and the Noise

35

What is calibration

● Assumption: the probability associated with the predicted class label should
reflect its ground truth correctness likelihood

● Reality: complex models are no longer well-calibrated
○ Random Forest, SVMs, Naive Bayes, Deep Learning

● If model is well calibrated:
○ If you predict team A wins in A vs B match with 60% probability:

■ In 100 A vs. B match, A should win 60% of the time!
○ In binary classification, if the model’s predictions over 100 samples whose prob. score of

positive class is 0.6
■ It means 60 samples here are positive (ground truth)

36

Why calibration matters

● The high-level idea here is that with calibration, we can interpret the estimated
probabilities as long-run frequencies.

● Estimated probabilities allow flexibility
● Model modularity

37

Model calibration: CTR

● The classifier is used to predict whether the user will click the add:
○ User A: ad 1 (20%) ad 2 (40%), ad 3 (8%), ad 4 (10%)
○ User B: ad 1 (30%) ad 2 (4%), ad 3 (80%), ad 4 (20%)
○ User C: ad 1 (15%) ad 2 (50%), ad 3 (10%), ad 4 (30%)

● Do we need to calibrate models if we want to rank ads for users
(personalization)?

38

Model calibration: CTR

● The classifier is used to predict whether the user will click the add:
○ User A: ad 1 (20%) ad 2 (40%), ad 3 (8%), ad 4 (10%)
○ User B: ad 1 (30%) ad 2 (4%), ad 3 (80%), ad 4 (20%)
○ User C: ad 1 (15%) ad 2 (50%), ad 3 (10%), ad 4 (30%)

● Do we need to calibrate models if we want to rank ads for users
(personalization)?
○ No need to calibrate. The probability are only used for comparison.

39

Model calibration: CTR

● The classifier is used to predict whether the user will click the add:
○ User A: ad 1 (20%) ad 2 (40%), ad 3 (8%), ad 4 (10%)
○ User B: ad 1 (30%) ad 2 (4%), ad 3 (80%), ad 4 (20%)
○ User C: ad 1 (15%) ad 2 (50%), ad 3 (10%), ad 4 (30%)

● Do we need to calibrate models if we want to calculate the expected number
of clicks?

○ The expected clicks for ad1 is 0.2 + 0.3 + 0.15 + …..
○ The expected number can be used to estimated the revenue before we really launch the ads?

40

Model calibration: CTR

● The classifier is used to predict whether the user will click the add:
○ User A: ad 1 (20%) ad 2 (40%), ad 3 (8%), ad 4 (10%)
○ User B: ad 1 (30%) ad 2 (4%), ad 3 (80%), ad 4 (20%)
○ User C: ad 1 (15%) ad 2 (50%), ad 3 (10%), ad 4 (30%)

● Do we need to calibrate models if we want to calculate the expected number
of clicks?

○ The expected clicks for ad1 is 0.2 + 0.3 + 0.15 + …..
○ The expected number can be used to estimated the revenue before we really launch the ads?
○ We need calibrated probabilities to estimate the expected number of clicks

41

Allow flexibility

Reliability plot

42

Tutorial:
https://www.youtube.com/watch?v=hWb-MIXKe-s

● Plot predicted probability against your empirical probability for some quantity
buckets of the data

Reliability plot

43

predicted_prob
score

True label

0.1 1

0.1 0

0.1 1

0.1 0

0.1 0

0.2

…

0.8 0

0.9 1

0.9 0

0.9 1

0.9 1

Predicted Prob: 0.1 Observed Prob:?

Predicted Prob: 0.9 Observed Prob:?

Case

44

Source: https://scikit-learn.org/stable/modules/calibration.html

Which machine learning model is the best
calibrated one?

Calibration methods

45

● View the classifier as a black-box and learn a calibration function which
transforms your prob. output to be calibrated

○ Do you remember some previous methods we discussed?

● Different approaches for the calibration function:
○ Platt’s scaling (Sklearn)

■ sklearn.calibration.CalibratedClassifierCV
■ https://github.com/gpleiss/temperature_scaling

○ Isotonic Regression (Sklearn)
○ Tensorflow Lattices

https://www.tensorflow.org/lattice/overview

3. Experiment Tracking

46

Key terms

47

● ML experiment:
○ The process of developing the ML model

● Experiment run:
○ each trial in an ML experiment

● Run artifact:
○ Any file that is associated with an ML run like models, images, in-memory objects and etc.

● Experiment metadata
● Experiment Tracking is the process to manage all experiments and their

meta-data
○ Parameters
○ Metrics
○ Models
○ Other Artifacts

Experiment tracking

48

● In the life cycle of machine learning, we will train and evaluate tons of different
machine learning models (representations, architectures, and
hyperparameters)

● Experiment tracking is the process to manage all experiments and their
meta-data

○ Source code
○ Environment
○ Data
○ Model
○ Hyperparameters
○ Metrics
○ Other Artifacts

Why experiment tracking matters

49

● With tracking, we can
○ Organize all the necessary components of a specific experiments

■ Where is my phone?
○ Reproduce past results using saved experiments
○ Log iterative improvements across time, data, ideas, teams, etc

Before tracking tools

50

Source:
https://dr.ntu.edu.sg/bitstream/10356/83235/1/Topic-Aware%20Deep%20Compositional%20Models%20for%20
Sentence%20Classification.pdf

Before tracking tools

51

Before tracking tools

52

● Even we use spreadsheets:
○ Error prone
○ No standard format
○ Visibility & Collaboration

Tracking tools

53

● MLFow: 100% Free and open-source
○ Used by Azure, Facebook, Databricks

● Comet ML
○ Used by Google AI, HuggingFace

● Neptune
○ Used by NewYorkers

● Weights and Biases
○ Used by Open AI

https://mlflow.org/
https://www.comet.ml/site/
https://neptune.ai/
https://wandb.ai/site

MLflow

54

● Definition: “An open source platform for the machine learning lifecycle”
● It is a python package with four main modules:

○ Tracking
○ Models
○ Model Registry
○ Projects

Source: https://mlflow.org/docs/latest/index.html
MLflow make experiments tracking manageable
with minimal code.

https://mlflow.org/docs/latest/index.html

Track experiments using MLflow

55

● MLflow Tracking module can organize the experiments into runs, and to keep
track of

○ Parameters
○ Metrics
○ Metadata
○ Artifacts
○ Models

● In each run, MLflow will automatically logs extra information including:
○ Source code
○ Version of the code
○ Start and end time
○ Author

● MLflow server also provides GUI to manage and check all of stored data

Storage location of MLflow

56

● Storage Location:
○ Local files

■ ./mlruns folders (local filesystem)
○ SQLite
○ Postgre SQL
○ S3 database
○ More details could be found:

■ https://mlflow.org/docs/latest/tracking.html#how-runs-and-artifacts-are-recorded

https://mlflow.org/docs/latest/tracking.html#how-runs-and-artifacts-are-recorded

Setup MLflow on localhost with tracking server

57

MLflow on localhost with tracking server

58

Experiments Run Files

Track experiments - after MLflow

59

Track experiments - after MLflow

60

Log metrics - after MLFlow

61

Log parameters - after MLFlow

62

Track experiments - after MLFlow

63

● For Deep Learning, the epoch performances can also be traced

Reproduce a model - after MLFlow

64

65

Next Class: Model Deployment

